4.三角式、代数式、指数式转换
简洁明了,直接看公式:
代数式:z=a+bi
三角式:z=r(cosθ+isinθ) 其中r=|z|
指数式:z=reiθ
例如:
z=2+i 求其三角式和指数式
r=|z|=51/2
θ=arctan1/2=π/6
即
三角式为z=51/2(cos30°+isin30°)
指数式为z=51/2eπi/6
简洁明了,直接看公式:
代数式:z=a+bi
三角式:z=r(cosθ+isinθ) 其中r=|z|
指数式:z=reiθ
例如:
z=2+i 求其三角式和指数式
r=|z|=51/2
θ=arctan1/2=π/6
即
三角式为z=51/2(cos30°+isin30°)
指数式为z=51/2eπi/6
取一复数z=a+bi,求z的模、辐角、辐角主值|z|=(a2+b2)1/2 //Z的模 arg(z)=arctan(b/a) //a>0 辐角主值 即令a,b分别为坐标轴x,y轴,其与x轴的夹角 Arg(z)=arg(z)+2kπ,k=0,±1,±2... //Z的辐角 ...
我们先来回忆一下一般函数的求导1.C'=0(C为常数);2.(Xn)'=nX(n-1) (n∈R);3.(sinX)'=cosX;4.(cosX)'=-sinX;5.(aX)'=aXIna (ln为自然对数);6.(logaX)'=1/(Xl...
奇点分为孤立奇点和非孤立奇点孤立奇点分为:本性奇点,可去奇点,极点非孤立奇点->Ln(x)、ln(x) x≤0本性奇点->若不存在极限 则为本性奇点(简单地说,看起来比较复杂的函数,例如cosz/(z-3))可去奇点->将奇点带入函数式,若分子分母为同次方,则为可去奇点 例如f(z...