4.三角式、代数式、指数式转换
简洁明了,直接看公式:
代数式:z=a+bi
三角式:z=r(cosθ+isinθ) 其中r=|z|
指数式:z=reiθ
例如:
z=2+i 求其三角式和指数式
r=|z|=51/2
θ=arctan1/2=π/6
即
三角式为z=51/2(cos30°+isin30°)
指数式为z=51/2eπi/6
简洁明了,直接看公式:
代数式:z=a+bi
三角式:z=r(cosθ+isinθ) 其中r=|z|
指数式:z=reiθ
例如:
z=2+i 求其三角式和指数式
r=|z|=51/2
θ=arctan1/2=π/6
即
三角式为z=51/2(cos30°+isin30°)
指数式为z=51/2eπi/6
什么是复数呢?z=a+bi(a,b均为实数)z便是复数,i是-1的开方,即i*i=-1,a为复数的实部,b为复数的虚部复数的基本运算规律:(a+bi)+(c+di)=(a+b)+(c+d)i (a+bi)-(c+di)=(a-b)+(c-d)i (a+bi)*(c+di)=a*b+a*di+c*...
取一复数z=a+bi,求z的模、辐角、辐角主值|z|=(a2+b2)1/2 //Z的模 arg(z)=arctan(b/a) //a>0 辐角主值 即令a,b分别为坐标轴x,y轴,其与x轴的夹角 Arg(z)=arg(z)+2kπ,k=0,±1,±2... //Z的辐角 ...