当前位置:首页 > 复变和积分变换 > 正文内容

3.模、辐角、辐角主值

chanra1n5年前 (2019-12-23)复变和积分变换5035

取一复数z=a+bi,求z的模、辐角、辐角主值

|z|=(a2+b2)1/2 //Z的模 

arg(z)=arctan(b/a) //a>0 辐角主值 即令a,b分别为坐标轴x,y轴,其与x轴的夹角 Arg(z)=arg(z)+2kπ,k=0,±1,±2... //Z的辐角


  例如 z=-2+2i,求z的模、辐角、辐角主值

|z|=81/2=2*21/2

arg(z)=3/4π

Arg(z)=3/4π+2kπ,k=0,±1,±2...

关于辐角的主要性质

Arg(z1z2)=Arg(z1)+Arg(z2)

Arg(z1/z2)=Arg(z1)-Arg(z2)

扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://world.myfpga.cn/index.php/post/86.html

分享给朋友:

“3.模、辐角、辐角主值” 的相关文章

5.常规方程和复数方程的转换

5.常规方程和复数方程的转换

ax+by=c,求改直角坐标方程的复数形式令x=(z+z*)/2y=(z-z*)/2i带入ax+by=c→a(z+z*)/2+b(z-z*)/2i=cz=a+bi,求该复数方程关于x,y的参数方程形式x=Re(z)y=Im(z)存在关于x、y的参数方程,求对应的复数形式方程x=fx(x)y=fy(y...

7.常见复数的计算

7.常见复数的计算

复数的对数函数计算LnZ=ln|z|+iarg(z)+2kπi k=0,±1,±2...eg:Ln(1+i)r=(12+12)1/2=21/2arg(z)=arctan(θ)=π/4即Ln(1+i)=ln21/2+πi/4 + 2kπi k=0,±1,±2...而ln(1+i)=ln21/...

12.留数和留数定理

12.留数和留数定理

奇点分为孤立奇点和非孤立奇点孤立奇点分为:本性奇点,可去奇点,极点非孤立奇点->Ln(x)、ln(x) x≤0本性奇点->若不存在极限 则为本性奇点(简单地说,看起来比较复杂的函数,例如cosz/(z-3))可去奇点->将奇点带入函数式,若分子分母为同次方,则为可去奇点 例如f(z...