当前位置:首页 > 复变和积分变换 > 正文内容

9.调和函数

chanra1n5年前 (2019-12-26)复变和积分变换6389

调和函数:如果二元函数f(x,y)在区域Ω内有二阶连续偏导数且满足拉普拉斯方程,则称二元函数f(x,y)为区域Ω中的调和函数。


首先需要说明什么是连续

eg:

1/x    ->x不能取0

lnx    ->x需要大于0

这些有不能取的值的就是不连续函数


调和函数首先需要满足其关于x,y的二阶偏导均为连续

u(x,y)=x2+xy3

u'x=2x+y3

u'y=3xy2


u'x'x=2         ->连续

u'y'y=6xy     ->连续

u'x'y=3y2     ->连续

u'y'x=3y2     ->连续


其次,需要满足 u'x'x+u'y'y=0

u'x'x+u'y'y≠0    ->不符合条件,故而该函数不是调和函数


eg:

u(x,y)=x3-6x2y-3xy2+2y3

证明调和函数,需要经过2次判断

1、证明其二阶偏导数连续

u'x=3x2-12yx-3y2

u'y=-6x2-6xy+6y2


u'x'x=6x-12y

u'x'y=6x-12y

u'y'y=-6x+12y

u'y'x=-12x-6y

2、如果u'x'x+u'y'y=0,则函数为调和函数

u'x'x+u'y'y=6x-12y-6x+12y=0    ->该函数为调和函数


共轭调和函数的计算

v(x,y)=∫u'xdy+∫[-u'y-(∫u'xdy)'x]dx+C


已知调和函数和共轭调和函数,->解析函数

①    计算f(x)=u(x,0)+iv(x,0)

②    将①中的x换成z

扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://world.myfpga.cn/index.php/post/92.html

分享给朋友:

“9.调和函数” 的相关文章

3.模、辐角、辐角主值

3.模、辐角、辐角主值

取一复数z=a+bi,求z的模、辐角、辐角主值|z|=(a2+b2)1/2 //Z的模 arg(z)=arctan(b/a) //a>0 辐角主值 即令a,b分别为坐标轴x,y轴,其与x轴的夹角 Arg(z)=arg(z)+2kπ,k=0,±1,±2... //Z的辐角 ...

4.三角式、代数式、指数式转换

4.三角式、代数式、指数式转换

简洁明了,直接看公式:代数式:z=a+bi三角式:z=r(cosθ+isinθ)   其中r=|z|指数式:z=reiθ例如:z=2+i 求其三角式和指数式r=|z|=51/2θ=arctan1/2=π/6即三角式为z=51/2(cos30°+isin30°)指数式为z=51/2...

7.常见复数的计算

7.常见复数的计算

复数的对数函数计算LnZ=ln|z|+iarg(z)+2kπi k=0,±1,±2...eg:Ln(1+i)r=(12+12)1/2=21/2arg(z)=arctan(θ)=π/4即Ln(1+i)=ln21/2+πi/4 + 2kπi k=0,±1,±2...而ln(1+i)=ln21/...

8.复数的求导与解析

8.复数的求导与解析

我们先来回忆一下一般函数的求导1.C'=0(C为常数);2.(Xn)'=nX(n-1) (n∈R);3.(sinX)'=cosX;4.(cosX)'=-sinX;5.(aX)'=aXIna (ln为自然对数);6.(logaX)'=1/(Xl...

10.复数的积分

10.复数的积分

奇点:函数不解析的点eg:设存在正向圆周|z|为2的函数C,φC ez/z在ez/z中,z≠0,即其一个奇点为Z0=0判断范围内有几个奇点需要结合    正向圆周|z|为2     这句话在圆周范围内的奇点数量...

12.留数和留数定理

12.留数和留数定理

奇点分为孤立奇点和非孤立奇点孤立奇点分为:本性奇点,可去奇点,极点非孤立奇点->Ln(x)、ln(x) x≤0本性奇点->若不存在极限 则为本性奇点(简单地说,看起来比较复杂的函数,例如cosz/(z-3))可去奇点->将奇点带入函数式,若分子分母为同次方,则为可去奇点 例如f(z...