当前位置:首页 > AI > 正文内容

基于低性能MCU的DP深度学习可研

chanra1n4年前 (2021-04-29)AI4689

待续...

扫描二维码推送至手机访问。

版权声明:本文由我的FPGA发布,如需转载请注明出处。

本文链接:https://world.myfpga.cn/index.php/post/191.html

分享给朋友:

“基于低性能MCU的DP深度学习可研” 的相关文章

python基础三层深度学习网络

python基础三层深度学习网络

#coding:utf-8 #neural network class definition import numpy import scipy.spatial class neuralNetwork:   &...

PHP使用SOCKET调用TensorFlow服务器实现图片鉴黄

PHP使用SOCKET调用TensorFlow服务器实现图片鉴黄

PHP代码<?php define("UNIX_DOMAIN","/socks/tfserver.sock"); $socket = socket_create(AF_UNIX, SOCK_STREAM, 0)...

基于M5Stack的UnitV2实现的口罩检测系统(边缘计算+上位机+网站前后端)

基于M5Stack的UnitV2实现的口罩检测系统(边缘计算+上位机+网站前后端)

硬件介绍及实现的功能    本项目实现了一个口罩检测的系统,采用M5Stack提供的M5Stack UnitV2设备,并以该设备为核心。UnitV2设备以Sigmstar SSD202D为核心,通过GC2145摄像头采集图像信息,使用OpenCV和腾讯的开源N...

使用ZYNQ7010安装PYNQ,基于PaddleLite实现目标检测+图片分类

使用ZYNQ7010安装PYNQ,基于PaddleLite实现目标检测+图片分类

目前只使用HPS实现了目标检测和图片分类,现在正在尝试使用HS端加速卷积,,,步骤一、烧录PYNQ镜像到TF卡    略步骤二、ssh链接至开发板,使用apt-get安装依赖sudo apt-get update &&am...

使用爱快Docker安装Paddle对Paddle生成的模型进行预测

使用爱快Docker安装Paddle对Paddle生成的模型进行预测

文头先放上要使用的Python推理脚本。 # -*- coding: UTF-8 -*- import os import cv2 import time import threading from&nb...