
AN 780: Compiling and Customizing an
Intel® Arria® 10 Custom Platform for

OpenCL*

Last updated for Quartus Prime Design Suite: 18.1

Subscribe

Send Feedback

AN-780
2018.10.30

101 Innovation Drive
San Jose, CA 95134
www.altera.com

https://www.intel.com/content/www/us/en/docs/programmable/683045/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20AN%20780:%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Contents

Compiling and Customizing an Intel® Arria® 10 Custom Platform for
OpenCL..1-1

Introduction to Custom Platforms.. 1-1
OpenCL System Architecture...1-1
Hierarchical Structure of the Intel Arria 10 GX FPGA Development Kit Reference Platform's

Hardware... 1-2
Intel Quartus Prime Software Revisions Describing the Custom Platform... 1-3

Descriptions of the Intel Arria 10 GX FPGA Development Kit Reference Platform Files.....1-4
Intel FPGA SDK for OpenCL and User Environment Setup... 1-8

Specifying the Intel FPGA SDK for OpenCL User Environment Variable Settings................1-9
Specifying the Intel FPGA SDK for OpenCL User Environment Variables on Linux..........1-10

Intel Arria 10 Custom Platform Project Setup and Customization Procedure................................. 1-11
Custom Platform Versioning..1-13
Board XML Files.. 1-13
Customization Flow...1-18

Intel Arria 10 Custom Platform Customization Example.. 1-20
Modifying the board.qsys File in the Custom Platform... 1-21
Modifying the Kernel (freeze_wrapper.v and board_spec.xml)..1-24
Updating the Top-Level I/O Ring with the Modified board.qsys and freeze_wrapper.v

Files...1-28
Updating the Original Custom Platform Directory with the New Custom Platform

Modifications.. 1-29
Compilation Log Files... 1-30
Analyzing the Results from Compilation... 1-30

Updating Your Custom Platform to Target a Different Device..1-31
Targeting a Device that Has a Migration Path in the Intel Quartus Prime Software............1-31
Targeting a Device that Has a Different Package Size... 1-31

Migrating the Custom Platform between Different Intel Quartus Prime Software Versions..........1-32
Custom Platform Automigration for Forward Compatibility... 1-32
Customizing Automigration...1-33
Overall Summary... 1-33

Document Revision History for Compiling and Customizing an Intel Arria 10 Custom
Platform for OpenCL ..1-34

TOC-2

Altera Corporation

Compiling and Customizing an Intel® Arria® 10
Custom Platform for OpenCL 1

2018.10.30

AN-780 Subscribe Send Feedback

This application note describes the procedures and design considerations for modifying the Intel® Arria®

10 GX FPGA Development Kit Reference Platform into your own Custom Platform by using the Intel
Software Development Kit (SDK) for OpenCL™(1)(2)

The information and customization techniques described in this document are applicable to any Intel
Arria 10 Custom Platform. For reference information, consult the Intel FPGA SDK for OpenCL Intel Arria
10 GX FPGA Development Kit Reference Platform Porting Guide. Contact your Intel representative for a
copy of this porting guide.

This document also describes how to set up your Custom Platform’s operating environment and project
with reference to a design example.

Related Information

• Intel FPGA SDK for OpenCL Getting Started Guide
• Intel FPGA SDK for OpenCL Custom Platform Toolkit User Guide
• Intel FPGA SDK for OpenCL FPGA Platforms page

Introduction to Custom Platforms
A Custom Platform provides a representation of the board hardware to the host. This hardware
representation enables a host to communicate and offload acceleration tasks to the OpenCL kernel. The
platform communicates with the kernel and allows data processing through a system. By customizing
existing platforms, you can create tailor-made systems to suit specific architectural requirements.

OpenCL System Architecture
An OpenCL System is comprised of a host software and an FPGA board hardware.

(1) The Intel FPGA SDK for OpenCL is based on a published Khronos Specification, and has passed the Khronos
Conformance Testing Process. Current conformance status can be found at www.khronos.org/conformance.

(2) OpenCL and the OpenCL logo are trademarks of Apple Inc. and used by permission of the Khronos Group™.

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of
Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice.
Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly
agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information
and before placing orders for products or services.
*Other names and brands may be claimed as the property of others.

ISO
9001:2015
Registered

www.altera.com
101 Innovation Drive, San Jose, CA 95134

https://www.intel.com/content/www/us/en/docs/programmable/683045/
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20(AN-780%202018.10.30)%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.
https://documentation.altera.com/#/link/mwh1391807309901/mwh1391807297091/en-us
https://documentation.altera.com/#/link/ewa1402666946838/mwh1391804342074/en-us
https://www.intel.com/content/www/us/en/products/details/fpga/platforms.html
https://www.khronos.org/conformance/
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html
http://www.altera.com/support/devices/reliability/certifications/rel-certifications.html

Figure 1-1: Overview of Typical OpenCL Hardware System and Custom Platform

MMD
HAL

OpenCL
Lib

User OpenCL
host application

DMA

DDR3 / QDR-II

DDR3 / QDR-II DDR3 / QDR-IIOpenCL kernel

Host Software FPGA Board Hardware

User Application User-Provided
Custom Platform

Intel-Provided
Components

The Host Software box in yellow shows the host application running on the host processor. The FPGA
Board Hardware box in grey depicts the hardware accelerator board that the Custom Platform describes.

On the FPGA board hardware side, the Custom Platform provides the post-place-and-route netlist, which
includes all of the hardware necessary to communicate with the host and the memory.

The netlist includes DDR memory interfaces, direct memory access (DMA), and any host interface (for
example, PCI Express* (PCIe*)). If there are streaming interfaces to be implemented as channels, these
interfaces are also included in the netlist to form an overall communication medium to the host.

When the Intel FPGA SDK for OpenCL Offline Compiler compiles an OpenCL kernel on the FPGA board
hardware side, the offline compiler generates a custom data flow circuit representing your kernel and
connects the circuit to the Custom Platform hardware.

On the host side, the Custom Platform needs to provide the memory-mapped device (MMD) layer to
allow the OpenCL libraries to communicate with your hardware. The SDK user provides the MMD layer
in the form of a library. When compiling the host application, the host application links with both the Intel
FPGA OpenCL library and the MMD library to create the host executable. The SDK user can then run the
host executable, which launches kernels on the FPGA accelerator board.

Hierarchical Structure of the Intel Arria 10 GX FPGA Development Kit
Reference Platform's Hardware

The Intel Arria 10 GX FPGA Development Kit Reference Platform consists of four main blocks, as
implemented in a Intel Quartus® Prime project.

1-2 Hierarchical Structure of the Intel Arria 10 GX FPGA Development Kit Reference
Platform's Hardware

AN-780
2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-2: Hierarchical Structure of the OpenCL Hardware System on an Intel Arria 10 Device

root_partition (top.v)

Board Interface
(board.qsys)

Freeze Wrapper (freeze_wrapper.v)

OpenCL Kernel
(kernel_system.qsys)

Root Partition (top.v)

The top.v file describes the I/O ring of the FPGA, which specifies in RTL all of the interfaces to which the
FPGA will connect on the PCB.

Board Interface (board.qsys)

The board.qsys file is a Platform Designer representation of the Reference Platform. This Platform
Designer representation contains IP such as external memory interface (EMIF) to connect to external
memory, and hard processor system (HPS) to act as an internal host. When modifying an existing
platform, you must update the board.qsys file. This file typically contains the logic for the interfaces
which are described in the top.v file.

Freeze Wrapper (freeze_wrapper.v)

The freeze_wrapper.v file is used for Partial Reconfiguration (PR). If your design does not use PR, this
file simply acts as a wrapper around the OpenCL kernel. You must change the freeze_wrapper.v file if
you wish to modify an existing platform that connects to the kernel. Refer to the Kernel Reprogramming
via Partial Reconfiguration section of the Intel FPGA SDK for OpenCL Intel Arria 10 GX FPGA Develop‐
ment Kit Reference Platform Porting Guide for more details on how to implement the freeze wrapper.

OpenCL Kernel (kernel_system.qsys)

When the SDK user compiles an OpenCL kernel, the Intel FPGA SDK for OpenCL Offline Compiler
creates the kernel_system.qsys file as part of the compilation flow. The SDK user designs this
Platform Designer representation of the kernel to optimize its performance when using the FPGA as a
hardware acceleration engine.

Intel Quartus Prime Software Revisions Describing the Custom Platform
From the perspective of a Intel Quartus Prime project, there are four software revisions that describe an
Intel Arria 10 Custom Platform: base.qsf, top.qsf, and flat.qsf.

Base Revision (base.qsf)

The base.qsf revision recompiles and synthesizes the complete project, including the static portion (that
is, the Custom Platform) and the kernel, to generate a new base.qar file. The base.qar file is a Intel

AN-780
2018.10.30 Intel Quartus Prime Software Revisions Describing the Custom Platform 1-3

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Quartus Prime Database Export File that contains the precompiled netlist of the static region of the
design. This revision also contains Logic Lock Plus regions for PR.

Intel Quartus Prime Compilation Stages:

1. Analysis and Synthesis (top.v, board.qsys, freeze_wrapper.v, and kernel_system.qsys)
2. Fitter
3. Assembler
4. Timing Analyzer

Top Revision (top.qsf)

The top.qsf revision is the same as the base.qsf revision. This revision imports the final snapshot
(that is, placement and routing contained in the .qar file) from the base compilation, and refits the
synthesis netlist created from the top_synth revision.

Intel Quartus Prime Compilation Stages:

1. Analysis and Elaboration (top.v, board.qsys, freeze_wrapper.v, and kernel_system.qsys)
2. Fitter
3. Assembler
4. Timing Analyzer

Flat Revision (flat.qsf)

The flat.qsf file contains all the standard project assignments (for example, pinouts). The other
revisions reference the flat.qsf file.

Descriptions of the Intel Arria 10 GX FPGA Development Kit Reference Platform
Files

Ensure that your Intel Arria 10 Custom Platform includes similar files as those in the Intel Arria 10 GX
FPGA Development Kit Reference Platform.

Table 1-1: Main Files Associated with the Intel Arria 10 GX FPGA Development Kit Reference Platform

This table is organized based on the hierarchical structure depicted in Figure 1-2.
File Description

XML FILES

board_env.xml XML file that describes the Reference Platform to the Intel
FPGA SDK for OpenCL.

board_spec.xml XML file that provides the definition of the board hardware
interfaces to the SDK.

ROOT PARTITION

top.v Top-level Verilog Design File for the OpenCL hardware system.

top.qpf Intel Quartus Prime Project File for the OpenCL hardware
system.

1-4 Descriptions of the Intel Arria 10 GX FPGA Development Kit Reference Platform Files
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Description

top.qsf Intel Quartus Prime Settings File for the SDK-user compilation
flow. This .qsf file is used when a pre-placed and pre-routed
Reference Platform is imported into the project.

top.sdc Synopsys* Design Constraints File that contains board-specific
timing constraints.

top_post.sdc Platform Designer and SDK IP-specific timing constraints.

flat.qsf Intel Quartus Prime Settings File for the flat project revision.
This file includes all the common settings, such as pin location
assignments, that are used in the other revisions of the project
(that is, base, top, and top_synth). The base.qsf and
top.qsf files include, by reference, all the settings in the
flat.qsf file.

The Intel Quartus Prime software compiles the flat revision with
minimal location constraints. The flat revision compilation does
not generate a base.qar file that you can use for future import
compilations and does not implement the guaranteed timing
flow.

board.qsys Platform Designer system that implements the board interfaces
(that is, the static region) of the OpenCL hardware system

base.qsf Intel Quartus Prime Settings File for the base project revision.
This file includes, by reference, all the settings in the flat.qsf
file.

Use this revision when porting the Reference Platform to your
own Custom Platform. The Intel Quartus Prime Pro Edition
software compiles this base project revision from source code.

base.qar Intel Quartus Prime Database Export File that contains the
precompiled netlist of the static region of the design. This file is
generated by the scripts/post_flow_pr.tcl file during
base revision compilations and is used during import revision
compilations.

base_compile.tcl Tcl script for the base revision compilation flow.

import_compile.tcl Tcl script for the SDK-user compilation flow (that is, import
revision compilation).

KERNEL FILES

ip/acl_kernel_clk_a10/acl_

kernel_clk_a10.qsys

Platform Designer component that defines the clock generation
logic for the kernel clock.

FREEZE WRAPPER FILES

ip/freeze_wrapper.v Verilog Design File that implements the freeze logic placed at
inputs and outputs of the PR region.

AN-780
2018.10.30 Descriptions of the Intel Arria 10 GX FPGA Development Kit Reference Platform Files 1-5

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Description

IP FILES USED FOR COMPILATION

ip/acl_ddr4_a10/<file_name> Directory containing Platform Designer files that implement
the DDR4 memory interface. These Platform Designer files are
instantiated in board.qsys.

ip/irq_controller/<file_name> IP that receives interrupts from the OpenCL kernel system and
sends message signaled interrupts (MSI) to the host.

Refer to the Message Signaled Interrupts section of the Intel
Arria 10 GX FPGA Development Kit Reference Platform Porting
Guide for more information.

SCRIPTS FOR COMPILATION

scripts/call_script_as_

function.tcl

Tcl wrapper function for a stand-alone Tcl script to allow the
script to be called as a Tcl function.

scripts/create_fpga_bin_pr.tcl Tcl script that generates the fpga.bin file. The fpga.bin file
contains all the necessary files for configuring the FPGA.

For more information on the fpga.bin file, refer to the Define
the Contents of the fpga.bin File for the Intel Arria 10 GX FPGA
Development Kit Reference Platform section of the Intel Arria 10
GX FPGA Development Kit Reference Platform Porting Guide.

scripts/post_flow_pr.tcl Tcl script that implements the guaranteed timing closure flow,
as described in the Guaranteed Timing Closure of the Intel Arria
10 GX FPGA Development Kit Reference Platform Design section
of the Intel Arria 10 GX FPGA Development Kit Reference
Platform Porting Guide.

scripts/pre_flow_pr.tcl Tcl script that executes before the invocation of the Intel
Quartus Prime software compilation. Running the script
generates the Platform Designer HDL for board.qsys and
kernel_system.qsys.

PROJECT FILES

quartus.ini Contains any special Intel Quartus Prime software options that
you need when compiling OpenCL kernels for the Reference
Platform.

DEVELOPMENT BOARD FILES

max5_150.pof Programming file for the MAX® V device on the Intel Arria 10
GX FPGA Development Kit that sets the memory reference
clock to 150 MHz by default at power-up.

You must program the max5_150.pof file onto your a10gx or
a10gx_es3 board based on the speed at which the DDR4
interface will run.

1-6 Descriptions of the Intel Arria 10 GX FPGA Development Kit Reference Platform Files
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

File Description

PARTIAL RECONFIGURATION

pr_base_id.txt Text file containing a unique number for a given base compila‐
tion that the runtime uses to determine whether it is safe to use
PR programming.

The pr_base_id.txt file is generated each time you perform
a base compilation. The unique number in this file is included
in the Intel FPGA SDK for OpenCL Offline Compiler
Executable File (.aocx) that each import compilation
generates.

Location of the Intel Arria 10 GX FPGA Development Kit Reference Platform
The Intel FPGA SDK for OpenCL includes a Custom Platform Toolkit that you can use to create your
custom platform based on an existing Reference Platform from Intel. The Custom Platform Toolkit
includes a set of tools, hardware, templates, and header files to run and test the kernel.

The Custom Platform Toolkit provides the raw hardware, which includes the various FPGA interfaces,
example kernels with which to test the board and the interfaces, and the MMD layer header files that
include the application programming interface (API) you will need to implement in your Custom
Platform.

The Custom Platform Toolkit is available in the INTELFPGAOCLSDKROOT/board directory, where
INTELFPGAOCLSDKROOT points to the location of the SDK installation.

Figure 1-3: Example Path to the Custom Platform Toolkit Directory

If you are using an Intel Preferred Board that is provided by an Intel Preferred Board Partner, download
the Custom Platform from your board vendor. You do not need to build your own Custom Platform.

AN-780
2018.10.30 Location of the Intel Arria 10 GX FPGA Development Kit Reference Platform 1-7

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Intel FPGA SDK for OpenCL and User Environment Setup
Install the Intel FPGA SDK for OpenCL before compiling an OpenCL application. SDK installation
instructions are available in the Intel FPGA SDK for OpenCL Getting Started Guide.

The software installation process installs the SDK application into a directory that you own. The INTELFP‐
GAOCLSDKROOT environment variable references the path to the SDK installation directory.

Table 1-2: Structure of the SDK Installation Directory

Windows Folder Linux Directory Description

bin bin User commands in the SDK. Include this
directory in your PATH environment
variable setting.

board board The SDK Custom Platform Toolkit and
Reference Platforms available with the
software.

The path to the Custom Platform Toolkit is
INTELFPGAOCLSDKROOT/board/

custom_platform_toolkit.

ip ip Intellectual property (IP) cores used to
compile device kernels.

host host Files necessary for compiling and running
your host application.

host\include host/include OpenCL Specification version 1.0 header
files and software interface files necessary
for compiling and linking your host applica‐
tion.

The host/include/CL subdirectory also
includes the C++ header file cl.hpp. The
file contains an OpenCL version 1.1 C++
wrapper API.

These C++ bindings enable a C++ host
program to access the OpenCL runtime
APIs using native C++ classes and methods.

Important: The OpenCL version 1.1 C
++ bindings are
compatible with OpenCL
Specification versions 1.0
and 1.1. Add this path to
the include file search
path in your development
environment.

1-8 Intel FPGA SDK for OpenCL and User Environment Setup
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Windows Folder Linux Directory Description

host\windows64\lib host/linux64/lib OpenCL host runtime libraries that provide
the OpenCL platform and runtime APIs.
These libraries are necessary for linking
your host application. To run an OpenCL
application on Linux, include this directory
in the LD_LIBRARY_PATH environment
variable setting.

host\windows64\bin host/linux64/bin Runtime commands and libraries necessary
for running your host application, wherever
applicable. For 64-bit Windows system,
include this directory in your PATH
environment variable setting.

For Windows system, this folder contains
runtime libraries.

For Linux system, this directory contains
platform-specific binary for the SDK utility
command.

share share Architecture-independent support files.

After you install the SDK on your machine and you are familiar with the directory structure, set up the
environment to run the Intel FPGA SDK for OpenCL Offline Compiler and emulate the design. The
following sections describe how to set the user environment for either the Windows or Linux operating
systems.

You have the option to set the SDK user environment variables permanently or transiently. The environ‐
ment variable settings describe the FPGA board and the host runtime to the software.

Specifying the Intel FPGA SDK for OpenCL User Environment Variable Settings on page 1-9
You have the option to set the Windows user environment variables permanently or transiently.

Specifying the Intel FPGA SDK for OpenCL User Environment Variables on Linux on page 1-10
You have the option to set the Linux user environment variables permanently or transiently.

Specifying the Intel FPGA SDK for OpenCL User Environment Variable Settings
You have the option to set the Windows user environment variables permanently or transiently.

AN-780
2018.10.30 Specifying the Intel FPGA SDK for OpenCL User Environment Variable Settings 1-9

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To apply the environment variable settings permanently on your system, set them in the Environment
Variable dialog box via the System Properties (Advanced) tab.

Table 1-3: Intel FPGA SDK for OpenCL Windows User Environment Variable Settings

Environment Variable Path to Include

PATH 1. %INTELFPGAOCLSDKROOT%\bin

2. %INTELFPGAOCLSDKROOT%\host\windows64\bin

where INTELFPGAOCLSDKROOT points to the path of the
software installation

AOCL_BOARD_PACKAGE_ROOT Location of Custom or Reference Platform

• To apply transient environment variable settings, open a command window and run the %INTELFP-
GAOCLSDKROOT%\init_opencl.bat script.
Example script output:

AOCL_BOARD_PACKAGE_ROOT path is not set in environment
Setting to default s5_ref board.
If you want to target another board, do
set AOCL_BOARD_PACKAGE_ROOT=board_pkg_dir and re-run this script
Adding %INTELFPGAOCLSDKROOT%\bin to PATH
Adding %INTELFPGAOCLSDKROOT%\host\windows64\bin to PATH
Adding %AOCL_BOARD_PACKAGE_ROOT%\windows64\bin to PATH

Verifying the Windows Intel FPGA SDK for OpenCL User Environment Variable Settings
After setting the Intel FPGA SDK for OpenCL user environment variables, run the SDK to ensure that the
software installation is successful.

1. To verify the environment variables in the command shell, type echo %INTELFPGAOCLSDKROOT
%.
If the returned path does not point to the location of the SDK installation, edit the INTELFP‐
GAOCLSDKROOT setting.

2. At a command prompt, invoke the aocl version utility command. An output similar to the one
below notifies you of a successful installation:

aocl <version>.<build> (Intel FPGA SDK for OpenCL, Version <version> Build
<build>, Copyright (C) <year> Intel Corporation)

Specifying the Intel FPGA SDK for OpenCL User Environment Variables on Linux
You have the option to set the Linux user environment variables permanently or transiently.

1-10 Verifying the Windows Intel FPGA SDK for OpenCL User Environment Variable
Settings

AN-780
2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

• To apply permanent environment variable settings, open a shell and then type:
export <variable_name>="<variable_setting>":$<variable_name>

For example, the command export PATH="$INTELFPGAOCLSDKROOT/bin":$PATH adds
$INTELFPGAOCLSDKROOT/bin to the list of PATH settings.

Table 1-4: Intel FPGA SDK for OpenCL Linux User Environment Variable Settings

Environment Variable Path to Include

PATH $INTELFPGAOCLSDKROOT/bin where INTELFPGAOCLSDK‐
ROOT points to the path of the software installation

LD_LIBRARY_PATH $INTELFPGAOCLSDKROOT/host/linux64/lib

$AOCL_BOARD_PACKAGE_ROOT/linux64/lib, where
AOCL_BOARD_PACKAGE_ROOT points to the path of the
Custom or Reference Platform

AOCL_BOARD_PACKAGE_ROOT Location Custom or Reference Platform

• To apply transient environment variable settings, open a command-line terminal and type:
source $INTELFPGAOCLSDKROOT/init_opencl.sh

Example script output:

AOCL_BOARD_PACKAGE_ROOT path is not set in environment
Setting to default s5_ref board.
If you want to target another board, do
set AOCL_BOARD_PACKAGE_ROOT=board_pkg_dir
Adding $INTELFPGAOCLSDKROOT/bin to PATH
Adding $INTELFPGAOCLSDKROOT/host/linux64/lib to LD_LIBRARY_PATH
Adding $AOCL_BOARD_PACKAGE_ROOT/linux64/lib to LD_LIBRARY_PATH

Verifying the Linux Intel FPGA SDK for OpenCL User Environment Variable Settings
After setting the Intel FPGA SDK for OpenCL user environment variables, run the SDK to ensure that the
software installation is successful.

1. To verify the environment variables in the command shell, type env %INTELFPGAOCLSDKROOT%.
If the returned path does not point to the location of the Intel FPGA SDK for OpenCL installation, edit
the INTELFPGAOCLSDKROOT setting.

2. At a command prompt, invoke the aocl version utility command. An output similar to the one
below notifies you of a successful installation:

aocl <version>.<build> (Intel FPGA SDK for OpenCL, Version <version> Build
<build>, Copyright (C) <year> Intel Corporation)

Intel Arria 10 Custom Platform Project Setup and Customization
Procedure

This section provides an overview of the Intel Arria 10 GX FPGA Development Kit Reference Platform’s
directory structure and files. It also outlines the procedures for acquiring the Reference Platform, checking
the default Reference Platform compilations, and modifying the Reference Platform name.

AN-780
2018.10.30 Verifying the Linux Intel FPGA SDK for OpenCL User Environment Variable Settings 1-11

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To acquire the Intel Arria 10 GX FPGA Development Kit Reference Platform, please contact your Intel
representative.

Table 1-5: Directory Structure of the Intel Arria 10 GX FPGA Development Kit Reference Platform

Windows Folder Linux Directory Description

board_env.xml board_env.xml eXtensible Markup Language (XML) file that
describes the Reference Platform to the Intel FPGA
SDK for OpenCL.

hardware hardware Contains the Intel Quartus Prime project templates
for the supported board variants. Each Reference
Platform board variant implements the entire
OpenCL hardware system on a given Intel Arria 10
GX FPGA Development Kit.

Specify the name of this directory in the
board_env.xml file. Within this directory, the
SDK assumes that any subdirectory containing a
board_spec.xml file is a board.

windows64 linux64 Contains the MMD library, kernel mode driver, and
executable files of the SDK utilities (that is, install,
uninstall, flash, program, diagnose) for your 64-bit
operating system.

source_windows64 source source_windows64: contains source codes for the
MMD library and SDK utilities. The MMD library
and the SDK utilities are in the windows64 folder.

source: contains source codes for the MMD library
and SDK utilities. The MMD library and the SDK
utilities are in the linux64 directory.

After developing your Intel Arria 10 Custom Platform, store it in the INTELFPGAOCLSDKROOT/board
directory. The SDK user will then set the AOCL_BOARD_PACKAGE_ROOT environment variable to
point to the location of the Custom Platform's board_env.xml file in order to target an OpenCL kernel
compilation to the Intel Arria 10 Custom Platform.

At a minimum, the Custom Platform that you design must include all of the following components:

• The board_env.xml file, which contains information about the custom platform.
• The hardware directory, which contains all of the hardware design information required for the Intel

FPGA SDK for OpenCL Offline Compiler to generate a custom FPGA. The board_spec.xml file
resides in this directory.

• The OS platform directory (for example, windows64 or linux64).

The OS Platform directory contains the board-specific libraries that must link to the host program, and
the executables that run when the SDK user invokes an SDK utility. You must include an OS platform

1-12 Intel Arria 10 Custom Platform Project Setup and Customization Procedure
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

directory in your Custom Platform for each supported host operating system (for example, 64-bit
Windows and Linux support).

Each board variant in the Custom Platform consists of a Intel Quartus Prime project and a board_
spec.xml file that describes the system to the Intel FPGA SDK for OpenCL Offline Compiler. The
board_spec.xml file also describes the interfaces necessary to connect to the kernel. The Intel FPGA
SDK for OpenCL Offline Compiler generates a custom circuit based on the data from the board_
spec.xml file. Then it incorporates the OpenCL kernel into the Platform Designer system that you create
for all non-kernel logic.

Custom Platform Versioning
Any Custom Platform that you create from the Intel Arria 10 GX FPGA Development Kit Reference
Platform will only function with the same version of the Intel Quartus Prime Pro Edition software that you
used to generate the Custom Platform.

Board XML Files
Your Custom Platform must include the XML files that describe your Custom Platform and each of your
hardware systems to the Intel FPGA SDK for OpenCL. You may create these XML files in simple text
editors (for example, WordPad for Windows, and vi for Linux). There are two XML files for each Custom
Platform: board_env.xml and board_spec.xml files.

The board_env.xml File
The board_env.xml file describes your Custom Platform to the Intel FPGA SDK for OpenCL Offline
Compiler. Store this file in the top-level directory of your Custom Platform.

Together with the other contents of the Custom Platform, the board_env.xml file sets up the board
installation that enables the Intel FPGA SDK for OpenCL Offline Compiler to target a specific accelerator
board.

A board_env.xml template is available in the board_package directory of the Custom Platform
Toolkit.

Below is an example board_env.xml file that describes the Intel Arria 10 GX FPGA Development Kit
Reference Platform’s board installation to the Intel FPGA SDK for OpenCL Offline Compiler.

<?xml version="1.0"?>
<board_env version="18.1" name="a10_ref_18.1">
 <hardware dir="hardware" default="a10gx_fifo"></hardware>
 <platform name="linux64">
 <mmdlib>%b/linux64/lib/libaltera_a10_ref_mmd.so</mmdlib>
 <linkflags>-L%b/linux64/lib</linkflags>
 <linklibs>-laltera_a10_ref_mmd</linklibs>
 <utilbindir>%b/linux64/libexec</utilbindir>
 </platform>

 <platform name="windows64">
 <mmdlib>%b/windows64/bin/altera_a10_ref_mmd.dll</mmdlib>
 <linkflags>/libpath:%b/windows64/lib</linkflags>
 <linklibs>altera_a10_ref_mmd.lib</linklibs>
 <utilbindir>%b/windows64/libexec</utilbindir>
 </platform>
</board_env>

AN-780
2018.10.30 Custom Platform Versioning 1-13

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Creating the board_env.xml File
To create a board_env.xml file for your Custom Platform, specify the elements and attributes in the
board_env.xml file template.
Refer to The board_env.xml File section for a sample board_env.xml file.

For the Intel FPGA SDK for OpenCL Offline Compiler to target a Custom Platform, the Intel FPGA SDK
for OpenCL user has to set the environment variable AOCL_BOARD_PACKAGE_ROOT to point to the
Custom Platform directory in which the board_env.xml file resides.

Table 1-6: Specifications of XML Elements and Attributes in the board_env.xml File

Element Attribute Description

board_env version: The Intel FPGA SDK for OpenCL Custom Platform Toolkit
release you use to create your Custom Platform.

Attention: The Custom Platform version must match the SDK
version you use to develop the Custom Platform.

name: Name of the board installation directory containing your Custom
Platform.

hardware dir: Name of the subdirectory, within the board installation directory,
that contains the board variants.

default: The default board variant that the Intel FPGA SDK for
OpenCL Offline Compiler targets when the SDK user does not specify
an explicit argument for the --board <board_name> Intel FPGA
SDK for OpenCL Offline Compiler option.

platform name: Name of the operating system (OS).

For a list of supported OS, refer to Operating System Support page on
the Intel website.

mmdlib A string that specifies the path to the MMD library of your Custom
Platform.

To load multiple libraries, specify them in an ordered, comma
separated list. The host application will load the libraries in the order
that they appear in the list.

linkflags A string that specifies the linker flags necessary for linking with the
MMD layer available with the board.

Tip: You can use %a to reference the SDK installation directory
and %b to reference your board installation directory.

linklibs A string that specifies the libraries the SDK must link against to use the
MMD layer available with the board.

Note: Include the alterahalmmd library, available with the SDK,
in this field because the library is necessary for all devices
with an MMD layer.

1-14 Creating the board_env.xml File
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

https://www.altera.com/support/support-resources/download/os-support.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Element Attribute Description

utilbindir Directory in which the SDK expects to locate the SDK utility executa‐
bles (that is, install, uninstall, program, diagnose, and flash)
.

Tip: You can use %a to reference the SDK installation directory
and %b to reference your board installation directory.

1. Within the board_env top-level XML element, under the name attribute, specify the name for the board
installation.
Usually, this field matches the directory in which the board_env.xml file is located. In this example,
this directory is a10_ref_16.0.

2. For the hardware element, under the dir attribute, specify the name of the hardware subdirectory
within your board installation directory in which all the board variants are located.
For Intel-provided Reference Platforms, this subdirectory is named hardware.

3. Also for the hardware element, under the default attribute, specify the default board variant to use.
This board variant is the board that will be targeted in compilation if a board is not specified. In this
example, the default board variant is a10gx_fifo.

4. A platform section exists for each host OS that is supported by the board installation. Under the name
attribute of the platform element, specify the name as one of the operating systems that is supported
by the SDK. Usually, the name is windows64, linux64, ibm power 64 , or arm32 for Intel SoCs.

5. For each supported OS, specify the following fields:

• mmdlib—a string that lists the paths to the MMD libraries of your Custom Platform.
• linkflags—a string that lists the compiler flags necessary for linking with the MMD driver

software layer. The MMD layer is delivered with the board during compilation.
• linklibs—a string that lists the libraries that the compiler must link to in order to use the MMD

layer with the board.

Remember: Include alterahalmmd in the linklibs field along with your libraries.
• utilbindir—the directory where the SDK expects to find the board utility executables. When the

SDK user runs an SDK utility such as install, uninstall, program, diagnose, or flash,
the SDK looks in the utilbindir directory to find the actual executable.

Related Information
The board_env.xml File on page 1-13

The board_spec.xml File
The board_spec.xml file contains metadata necessary to describe your hardware system to the Intel
FPGA SDK for OpenCL. Include the board_spec.xml file as part of your custom platform deliverable.

The information conveyed in the XML file includes device resource such as ALMs and DSP blocks
available, memory component characteristics and channel information if your device supports streaming
applications, and kernel interface information.

AN-780
2018.10.30 The board_spec.xml File 1-15

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Below is an example of the board_spec.xml file for the Intel Arria 10 GX FPGA Development Kit
Reference Platform.

<?xml version="1.0"?>
<board version="18.1" name="a10gx">

 <compile project="top" revision="top" qsys_file="none" generic_kernel="1">
 <generate cmd="echo"/>
 <synthesize cmd="quartus_cdb -t import_compile.tcl"/>
 <auto_migrate platform_type="a10_ref" >
 <include fixes=""/>
 <exclude fixes=""/>
 </auto_migrate>
 </compile>

 <device device_model="10ax115s2f4512sg_dm.xml">
 <used_resources>
 <alms num="36710"/> <!--Total ALMs-ALMs available to kernel_system_inst-->
 <ffs num="146840"/>
 <dsps num="67"/>
 <rams num="224"/>
 </used_resources>
 </device>

 <!-- DDR4-2400 -->
 <global_mem name="DDR" max_bandwidth="19200" interleaved_bytes="1024"
 config_addr="0x018">
 <interface name="board" port="kernel_mem0" type="slave" width="512"
maxburst="16"
 address="0x00000000" size="0x80000000" latency="240" addpipe="1"/>
 </global_mem>

 <host>
 <kernel_config start="0x00000000" size="0x0100000"/>
 </host>

 <interfaces>
 <interface name="board" port="kernel_cra" type="master" width="64" misc="0"/>
 <interface name="board" port="kernel_irq" type="irq" width="1"/>
 <interface name="board" port="acl_internal_snoop" type="streamsource"
 enable="SNOOPENABLE" width="31" clock="board.kernel_clk"/>
 <kernel_clk_reset clk="board.kernel_clk" clk2x="board.kernel_clk2x"
 reset="board.kernel_reset"/>
 </interfaces>

</board>

Creating the board_spec.xml File
To create a board_spec.xml file for your Custom Platform, specify the elements and attributes that
describe your board hardware to the Intel FPGA SDK for OpenCL.

A template of the board_spec.xml file is available in the INTELFPGAOCLSDKROOT/board/custom_
platform_toolkit/board_package/hardware/template directory of the Custom Platform
Toolkit.

All of the information in the board_spec.xml file should match the actual hardware files.

Table 1-7: Specifications of XML Elements and Attributes in the board_spec.xml File

Element Attribute Description

board version, name

1-16 Creating the board_spec.xml File
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Element Attribute Description

device device_model, used_resources
global_mem name, max_bandwidth,interleaved_bytes, config_addr, [default],

interface

host kernel_config

[channels] interface

interfaces interface, kernel_clk_reset
compile project, revision, qsys_file, generic_kernel, generate_cmd,

synthesize_cmd, auto_migrate

1. For the top-level board element, specify the board name (that is, name) and the targeted Intel Quartus
Prime software version (that is, version).
In the example board_spec.xml file, the board name is a10gx_es3 and the Intel Quartus Prime
software version is 16.0.

2. Specify the device model file.
The Intel FPGA SDK for OpenCL includes device models for the most relevant devices in the
INTELFPGAOCLSDKROOT/share/models/dm directory. Identify your FPGA’s .xml device model file
in the dm directory and specify its file name in the device_model attribute of the device element. If
the device model file pertaining to your FPGA is not listed in the dm directory, create a device model
file for your FPGA and then store the file in your Custom Platform subdirectory in which the
board_spec.xml file resides.

3. For the used_resources element, specify information about the FPGA resources that are consumed by
the Custom Platform.
a. Update these values after the Intel Quartus Prime software finishes compiling the Custom Platform.

The actual amount of resources available to custom kernels will be the total amount of hardware
resources minus the resources used by the Custom Platform hardware for components such as the
memory controller and the PCIe IP core.

4. If your board contains global memory such as DDR3 or QDR, specify the global_mem element and
corresponding attributes to describe the characteristics of the memory interface.

5. If your board contains streaming interface such as Ethernet, specify the channels element and the
corresponding interface attribute to identify the I/O channels as either sinks or sources and to
describe their characteristics.

6. With respect to information about the host interface to the kernel, specify the kernel_config attribute
of the host element to instruct the compiler at what offset the kernel resides from the perspective of
the kernel control register access master on the kernel_interface module.
The offset value should be 0 because the access master does not master anything except for kernels.
Leave the size attribute at the default value of 0x0100000.

7. Specify the interfaces element and its corresponding attributes to describe the kernel interfaces that
connect to the generated OpenCL kernels and control their behaviors.
a. For each kernel interface, include one of the following interface type: master, irq, and

streamsource.

AN-780
2018.10.30 Creating the board_spec.xml File 1-17

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Similar to global memory interfaces, specify the name, port, and width attributes. For the
streamsource interface type, specify the clock attribute with the name of the clock that is used for
the snoop stream. Usually, this clock is the kernel clock.

Customization Flow
The Intel Arria 10 Custom Platform customization flow involves compiling an existing Reference Platform
and the modifying the Reference Platform according to your specifications.

The customization flow has five steps:

1. Check default Reference or Custom Platform with a standard OpenCL kernel.
2. Set up project for customization.
3. Add components to Custom Platform, including kernel and I/O ring.
4. Check compilation results and debug.
5. Update Custom Platform with modified files.

The following sections describe how to compile the original Reference Platform with and without platform
regeneration and also without any customization. Performing these compilations checks the Intel FPGA
SDK for OpenCL environment and project setup.

1. Compiling a Kernel without Regenerating the Custom Platform on page 1-18
Step 1 in the Intel Arria 10 Custom Platform customization flow is to verify the functionality of the
existing Reference Platform by compiling it with a simple OpenCL kernel but without regenerating the
platform.

2. Preparing an Existing Custom Platform for Customization on page 1-19
Step 2 in the Intel Arria 10 Custom Platform Customization Flow is to prepare the Custom Platform for
customization.

Compiling a Kernel without Regenerating the Custom Platform
Step 1 in the Intel Arria 10 Custom Platform customization flow is to verify the functionality of the
existing Reference Platform by compiling it with a simple OpenCL kernel but without regenerating the
platform. Compiling the existing platform checks the platform’s setup and verifies that the Intel FPGA
SDK for OpenCL Offline Compiler works as expected. A main advantage to compiling a kernel without
regenerating the Reference Platform is that it preserves placement and routing as well as timing, which
saves compilation time.

Intel assumes that you have set up your Windows or Linux environment correctly to run the Intel FPGA
SDK for OpenCL Offline Compiler.

1. Obtain the Intel Arria 10 GX FPGA Development Kit Reference Platform (for example,
a10_ref_18.1_b222.zip) from your Intel representative.

2. Unpack the Reference Platform and store it in a directory named <your_custom_platform>. For
this example, <your_custom_platform> is a10gx_ref_18.1.

3. Choose one of the board variants in the a10gx_ref_18.1/hardware directory as the basis of your
design (for example, a10gx).

4. Open the a10gx_ref_18.1/board_env.xml file in a text editor and perform the following tasks:
a. Change the board name setting from a10_ref to a10gx_ref_18.1.
b. Verify that the board default setting is a10gx_es3.
c. Save and then close the board_env.xml file.

1-18 Customization Flow
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Open the a10gx_ref_18.1/hardware/a10gx/board_spec.xml file in a text editor and perform
the following tasks:
a. Verify that the board name setting is a10gx_es3.
b. Save and then close the board_spec.xml file.

6. To set the AOCL_BOARD_PACKAGE_ROOT environment variable, at a command prompt, invoke the
set AOCL_BOARD_PACKAGE_ROOT=<path to a10gx_ref_18.1> command, where
a10gx_ref_18.1 is the new design directory.

7. To test the environment, first invoke the aocl board-xml-test command to read the
board_env.xml file and display the Custom Platform information on-screen.

8. Invoke the aoc --list-boards command to display the board variants that are available in the
a10gx_ref_18.1 Custom Platform.

Figure 1-4: Sample Output from the aocl board-xml-test and aoc --list-boards Commands

9. To compile an OpenCL kernel without regenerating a10gx_ref_18.1, perform the following tasks:
a. Download the Vector Addition design example from the OpenCL Design Examples page.
b. Copy the vector_add.cl file to the project directory a10gx_ref_18.1.
c. Invoke the aoc vector_add.cl –v --no-interleaving default command.
d. After the compilation is completed, you can review the resulting files in the vector_add directory

within your working directory.
10.Refer to the Analyzing the Results from Compilation section to check the Fitter, Timing Analyzer reports

and placement in the Floorplanner.

Related Information
Analyzing the Results from Compilation on page 1-30

Preparing an Existing Custom Platform for Customization
Step 2 in the Intel Arria 10 Custom Platform Customization Flow is to prepare the Custom Platform for
customization. Before customizing your Custom Platform, make a copy of the existing platform to keep
the original platform settings intact.

Intel assumes that you have completed the steps outlined in the Compiling a Kernel (vector_add.cl) without
Regenerating the Custom Platform section.

AN-780
2018.10.30 Preparing an Existing Custom Platform for Customization 1-19

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

https://www.intel.com/content/www/us/en/support/programmable/support-resources/design-examples/design-examples-overview.html
mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To set up the project for customization, perform the following tasks:

1. Make a copy of the a10gx_ref_18.1/hardware/a10gx directory.
2. Rename the copied directory from a10gx to a10gx_fifo. This new directory will contain any new

files and changes resulted from the customization.
3. Open the a10gx_ref_18.1/board_env.xml file in a text editor and perform the following tasks:

a. Change the board default setting from a10gx_es3 to a10gx_fifo.
b. Save and then close the board_env.xml file.

4. Open the a10gx_ref_18.1/hardware/a10gx_fifo/board_spec.xml file a text editor and
perform the following tasks:
a. Change the board name setting from a10gx_es3 to a10gx_fifo.
b. Save and then close the board_spec.xml file.

5. Navigate to the a10gx_ref_18.1 project directory and invoke the
aoc vector_add.cl –v --no-interleaving default command.

6. After the compilation is completed, you can review the resulting files in the vector_add directory
within your working directory.

7. Refer to the Analyzing the Results from Compilation section to check the Fitter, Timing Analyzer reports
and placement in the Floorplanner.

Related Information

• Analyzing the Results from Compilation on page 1-30
• Compiling a Kernel without Regenerating the Custom Platform on page 1-18

Intel Arria 10 Custom Platform Customization Example
This section describes the process of modifying the a10gx_ref_18.1 Custom Platform that you prepared for
customization.

Prerequisites for customization:

• You have prepared the original Custom Platform for customization, as outlined in the Preparing an
Existing Custom Platform for Customization section.

• You have a <your kernel file name> directory within the Custom Platform directory. The
vector_add directory mentioned herein was created after you compiled the a10gx_ref_18.1 Custom
Platform for the first time using the Intel FPGA SDK for OpenCL Offline Compiler, as described in the
Compiling a Kernel without Regenerating the Custom Platform and Preparing an Existing Custom
Platform for Customization sections.

The following information pertains to Steps 3 to 5 of the Customization Flow.

The figure below illustrates the customized a10gx_ref_18.1 Custom Platform’s hardware. Refer to Figure
1-2 for an illustration of the original Intel Arria 10 GX FPGA Development Kit Reference Platform’s
architecture. Customization (shown in orange) includes adding an Avalon® Streaming (Avalon-ST) Single
Clock FIFO component to the board.qsys file and then connecting it to the kernel via the freeze
wrapper. Because the customization creates a streaming interface, you must alter the board_spec.xml
file and change the channel property.

1-20 Intel Arria 10 Custom Platform Customization Example
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-5: Architectural Representation of a Customized Custom Platform Based on the Intel Arria 10 GX
FPGA Development Kit Reference Platform

Avalon-ST FIFO Avalon-ST Adapter
FIFO_IN

Avalon-ST Adapter
FIFO_OUT

Board Interface
(board.qsys)

Freeze Wrapper (freeze_wrapper.v)

OpenCL Kernel
(kernel_system.qsys)

root_partition (top.v)

Customizing the a10gx_ref_18.1 Custom Platform involves the following tasks:

1. Modifying the board.qsys File in the Custom Platform on page 1-21
Modify the board.qsys file by adding an Avalon-ST Single Clock FIFO component.

2. Modifying the Kernel (freeze_wrapper.v and board_spec.xml) on page 1-24
Modify the freeze_wrapper.v and board_spec.xml files by adding an Avalon-ST Adapter
component.

3. Updating the Top-Level I/O Ring with the Modified board.qsys and freeze_wrapper.v Files on page
1-28
Add ports and signals to the board and freeze_wrapper instances in the top.v file.

4. Updating the Original Custom Platform Directory with the New Custom Platform Modifications
on page 1-29
The final step to customizing your Custom Platform is to copy all modified files back into the original
Custom Platform directory (that is, the a10gx_ref_18.1/hardware/a10gx_fifo directory).

5. Compilation Log Files on page 1-30
The compilation log files record verbose information while the software tools synthesize and compile
the Custom Platform and the kernel.

6. Analyzing the Results from Compilation on page 1-30
After the full compilation flow has completed, check the results in the Intel Quartus Prime Pro Edition
software GUI.

Related Information

• Preparing an Existing Custom Platform for Customization on page 1-19
• Compiling a Kernel without Regenerating the Custom Platform on page 1-18
• Customization Flow on page 1-18

Modifying the board.qsys File in the Custom Platform
Modify the board.qsys file by adding an Avalon-ST Single Clock FIFO component.

AN-780
2018.10.30 Modifying the board.qsys File in the Custom Platform 1-21

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

1. Opening an Existing Intel Quartus Prime Project and the board.qsys Platform Designer System
Design on page 1-22
Open the board.qsys file in the Platform Designer system integration tool.

2. Adding the Avalon-ST Single Clock FIFO Component into the Platform Designer System on page
1-22
Add an Avalon-ST Single Clock FIFO component to the board.qsys Platform Designer system.

3. Connecting the Avalon-ST Single Clock FIFO Component's Exported Signals in the Top-Level
Platform Designer System on page 1-24
After adding the Avalon-ST Single Clock FIFO component to board.qsys, connect the component's
exported signals by generating HDL.

Opening an Existing Intel Quartus Prime Project and the board.qsys Platform Designer System
Design

Open the board.qsys file in the Platform Designer system integration tool.

1. Open the Intel Quartus Prime Pro Edition software.
2. Open the Intel Quartus Prime project file a10gx_ref_18.1/vector_add/top.qpf.
3. Open Platform Designer from the Tools menu or the toolbar.
4. Open the system named board.qsys.

Adding the Avalon-ST Single Clock FIFO Component into the Platform Designer System
Add an Avalon-ST Single Clock FIFO component to the board.qsys Platform Designer system.

1. With board.qsys opened in Platform Designer, add an Avalon-ST Single Clock FIFO component
from the IP catalog. Open the parameter editor and specify the following configuration settings:

Figure 1-6: Configuration Settings of the Avalon-ST Single Clock FIFO Component

2. Click Finish.
3. Right-click the board_sc_fifo component at the bottom of the System Contents tab and select

Rename.

1-22 Opening an Existing Intel Quartus Prime Project and the board.qsys Platform
Designer System Design

AN-780
2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-7: Renaming the board_sc_fifo component to kernel_sc_fifo

4. Change the component’s name to kernel_sc_fifo.
5. Connect the kernel_sc_fifo component’s clock input interface to the kernel clock by performing the

following tasks:
a. Right-click the clock interface of the kernel_sc_fifo component.
b. Click Connections > kernel_sc_fifo.clock and then select kernel_clk_gen.kernel_clk.

6. Connect the reset interface of the kernel_sc_fifo component to the PCIe reset.
a. Right-click the reset interface of the kernel_sc_fifo component.
b. Click Connections > kernel_sc_fifo.reset and then select kernel_interface.kernel_reset.

7. Export the in and out interfaces of the Avalon-ST Single Clock FIFO component by double-clicking
the Export column in the System Contents tab.
The in and out ports are named kernel_sc_fifo_in and kernel_sc_fifo_out, respectively.

AN-780
2018.10.30 Adding the Avalon-ST Single Clock FIFO Component into the Platform Designer

System
1-23

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-8: In and Out Ports of the Avalon-ST Single Clock FIFO Component

8. Verify that there are no errors in the message window.

Connecting the Avalon-ST Single Clock FIFO Component's Exported Signals in the Top-Level
Platform Designer System

After adding the Avalon-ST Single Clock FIFO component to board.qsys, connect the component's
exported signals by generating HDL.

1. Save the board.qsys system.
2. Click Close.
3. From the Generate menu in Platform Designer, select Generate HDL. Alternatively, click Generate

HDL in the lower right corner of the Platform Designer window.
4. Click Generate.
5. Click Close when HDL generation is completed. Ignore any warnings that might appear.

Modifying the Kernel (freeze_wrapper.v and board_spec.xml)
Modify the freeze_wrapper.v and board_spec.xml files by adding an Avalon-ST Adapter
component.

1. Opening an Existing Intel Quartus Prime Project and the kernel_system.qsys Platform Designer
System Design on page 1-25
Open the kernel_system.qsys file in the Platform Designer system integration tool.

2. Adding an Avalon-ST Adapter Component into the Platform Designer System on page 1-25
Add an Avalon-ST Adapter component to the kernel_system.qsys Platform Designer system.

3. Connecting the Avalon-ST Adapter Component's Exported Signals in the Top-Level Platform
Designer System on page 1-27
After adding the Avalon-ST Adapter component to kernel_system.qsys, connect the component's
exported signals by generating HDL.

4. Modifying the board_spec.xml File on page 1-27
Add streaming FIFO channel information into the board_spec.xml file.

1-24 Connecting the Avalon-ST Single Clock FIFO Component's Exported Signals in the
Top-Level Platform Designer System

AN-780
2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

5. Modifying the freeze_wrapper.v File on page 1-28
Create ports on the freeze_wrapper and kernel_system modules for the Avalon-ST Single Clock FIFO
component.

Opening an Existing Intel Quartus Prime Project and the kernel_system.qsys Platform Designer
System Design

Open the kernel_system.qsys file in the Platform Designer system integration tool.

1. Open the Intel Quartus Prime Pro Edition software.
2. Open the Intel Quartus Prime project file a10gx_ref_18.1/vector_add/top.qpf.
3. Open Platform Designer tool from the Tools menu or the toolbar.
4. Open the system named kernel_system.qsys.

The Intel FPGA SDK for OpenCL Offline Compiler created the kernel_system.qsys file after it
finished compiling the Custom Platform project for the first time, as described in the Compiling a
Kernel without Regenerating the Custom Platform section.

Related Information
Compiling a Kernel without Regenerating the Custom Platform on page 1-18

Adding an Avalon-ST Adapter Component into the Platform Designer System
Add an Avalon-ST Adapter component to the kernel_system.qsys Platform Designer system.

1. With kernel_system.qsys opened in Platform Designer, add an Avalon-ST Adapter component
from the IP catalog. Open the parameter editor and specify the following configuration settings:

AN-780
2018.10.30 Opening an Existing Intel Quartus Prime Project and the kernel_system.qsys

Platform Designer System Design
1-25

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-9: Configuration Settings of the Avalon-ST Adapter Component

2. Click Finish.
3. Right-click the kernel_system_st_adapter component at the bottom of the System Contents tab and

select Rename.
4. Change the component’s name to kernel_sc_fifo_in.
5. Repeat step 1 to step 4 and rename this component’s name to kernel_sc_fifo_out.
6. Connect the kernel_sc_fifo_in component’s clock input interface to the kernel clock by performing the

following tasks:
a. Right-click the clock interface of the kernel_sc_fifo_in component.
b. Click Connections > kernel_sc_fifo_in.in_clk_0 and then select kernel_clk_gen.clk_1x.out_clk.

7. Connect the reset interface of the kernel_sc_fifo_in component to the PCIe reset.
a. Right-click the reset interface of the kernel_sc_fifo_in component.
b. Click Connections > kernel_sc_fifo_in.in_rst_0 and then select reset.out_reset.

8. Repeat step 6 and step 7 for the kernel_sc_fifo_out instance.
9. Export the in and out interfaces of the Avalon-ST Adapter component by double-clicking the Export

column in the System Contents tab.
The in and out ports are named kernel_sc_fifo_in and kernel_sc_fifo_out, respectively.

1-26 Adding an Avalon-ST Adapter Component into the Platform Designer System
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-10: In and Out Ports of the Avalon-ST Adapter Component

10.Verify that there are no errors in the message window.

Connecting the Avalon-ST Adapter Component's Exported Signals in the Top-Level Platform
Designer System

After adding the Avalon-ST Adapter component to kernel_system.qsys, connect the component's
exported signals by generating HDL.

1. Save the kernel_system.qsys system.
2. Click Close.
3. From the Generate menu in Platform Designer, select Generate HDL. Alternatively, click Generate

HDL in the lower right corner of the Platform Designer window.
4. Click Generate.
5. Click Close when HDL generation is completed. Ignore any warnings that might appear.

Modifying the board_spec.xml File
Add streaming FIFO channel information into the board_spec.xml file.

1. Open the board_spec.xml file in the a10gx_ref_18.1/hardware/a10gx_fifo directory.
2. Add the following streaming FIFO channel information into the board_spec.xml file:

<channels>
 <interface name="board" width="64" type="streamsource"
port="kernel_sc_fifo_out" chan_id="kernel_sc_fifo_in"/>
 <interface name="board" width="64" type="streamsink" port="kernel_sc_fifo_in"
chan_id="kernel_sc_fifo_out"/>
<channels>

3. Save the board_spec.xml file.

AN-780
2018.10.30 Connecting the Avalon-ST Adapter Component's Exported Signals in the Top-Level

Platform Designer System
1-27

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Modifying the freeze_wrapper.v File
Create ports on the freeze_wrapper and kernel_system modules for the Avalon-ST Single Clock FIFO
component.

1. Open the ip/freeze_wrapper.v file in the vector_add directory.
2. In the freeze_wrapper.v file, create ports on the freeze_wrapper module for the 64-bit Avalon-ST

Single Clock FIFO component.

input [63:0] board_kernel_sc_fifo_in_data,
input board_kernel_sc_fifo_in_valid,
output board_kernel_sc_fifo_in_ready,
output [63:0] board_kernel_sc_fifo_out_data,
output board_kernel_sc_fifo_out_valid,
input board_kernel_sc_fifo_out_ready

3. In the freeze_wrapper.v file, create ports on the kernel_system instance module to match the ports
you added in the board_spec.xml file. Connect these signals to the top-level ports of the
freeze_wrapper module.

.kernel_sc_fifo_in_data(board_kernel_sc_fifo_in_data)

.kernel_sc_fifo_in_valid(board_kernel_sc_fifo_in_valid),

.kernel_sc_fifo_in_ready(board_kernel_sc_fifo_in_ready),

.kernel_sc_fifo_out_data(board_kernel_sc_fifo_out_data),

.kernel_sc_fifo_out_valid(board_kernel_sc_fifo_out_valid),

.kernel_sc_fifo_out_ready(board_kernel_sc_fifo_out_ready)

4. Save the freeze_wrapper.v file.

Updating the Top-Level I/O Ring with the Modified board.qsys and
freeze_wrapper.v Files

Add ports and signals to the board and freeze_wrapper instances in the top.v file.

1. Open the top.v file in the Intel Quartus Prime Pro Edition software.
2. Add the new ports to the board instance.
3. Add the new ports to the freeze_wrapper instance.
4. Add signal (wires) to connect the board instance to the freeze_wrapper instance.
5. Save the top.v file.
6. In the Intel Quartus Prime Pro Edition software, run Analysis and Synthesis to check the syntax of your

RTL and fix any errors.

1-28 Modifying the freeze_wrapper.v File
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-11: RTL Netlist of the New Board Interface Connected to the New Freeze Wrapper

Updating the Original Custom Platform Directory with the New Custom Platform
Modifications

The final step to customizing your Custom Platform is to copy all modified files back into the original
Custom Platform directory (that is, the a10gx_ref_18.1/hardware/a10gx_fifo directory). By
updating the files in the a10gx_fifo directory, the Intel FPGA SDK for OpenCL Offline Compiler will
use the new customized Custom Platform when it performs subsequent compilations that target your Intel
Arria 10 board.

1. Copy the following files back into the hardware/a10gx_fifo directory.

Table 1-8: Files to be Copied into the hardware/a10gx_fifo Directory

Files Changes

ROOT PARTITION

top.v Added extra ports between the board and freeze wrapper
components.

BOARD INTERFACE

board.qsys Added a FIFO component to the Platform Designer framework.

base.qar Copied and replaced the base.qar file from the current
directory back into the hardware/a10gx_fifo directory.

FREEZE WRAPPER FILES

AN-780
2018.10.30 Updating the Original Custom Platform Directory with the New Custom Platform

Modifications
1-29

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Files Changes

freeze_wrapper.v Added extra ports for the FIFO component that is part of the
kernel logic.

2. After modifying the files in the original Custom Platform directory, regenerate your new Custom
Platform by performing the following tasks:
a. Ensure that the vector_add.cl file is in the a10gx_ref_18.1 project directory. If not,

download the design example and copy the vector_add.cl file to the a10gx_ref_18.1
directory.

b. At a command prompt, invoke the aoc vector_add.cl –v --no-interleaving
default command to compile the vector_add kernel to hardware. If the Intel FPGA SDK for
OpenCL Offline Compiler reports any errors, refer to the Compilation Log Files section for more
information that can help you debug your kernel.

c. After the Intel FPGA SDK for OpenCL Offline Compiler finishes compiling the vector_add kernel,
refer to the Analyzing the Results from Compilation section to check the Fitter, Timing Analyzer
reports and placement in the Floorplanner.

Related Information

• Analyzing the Results from Compilation on page 1-30
• Compilation Log Files on page 1-30

Compilation Log Files
The compilation log files record verbose information while the software tools synthesize and compile the
Custom Platform and the kernel.

Check the following files for Intel FPGA SDK for OpenCL Offline Compiler compilation errors:

• The <kernel_name>/<kernel_name>.log file describes how the Intel FPGA SDK for OpenCL
Offline Compiler optimizes the contents of the kernel file to target the FPGA. In the case of the
vector_add design example, the corresponding vector_add.log file is in the vector_add directory.

• The <kernel_name>/quartus_sh_compile.log file describes how the Intel FPGA SDK for
OpenCL Offline Compiler executes a complete hardware compilation flow from Analysis and Synthesis
to the Fitter stage, timing analysis, and generation of the programming files.

Analyzing the Results from Compilation
After the full compilation flow has completed, check the results in the Intel Quartus Prime Pro Edition
software GUI.

1. Start the Intel Quartus Prime Pro Edition software version 18.1.
2. From the File menu, select Open Project.
3. Open the project file <project_directory>/top.qpf.
4. To open the compilation report, select Compilation Report from the Processing menu.
5. In the compilation report, navigate to the Timing Analyzer section in the Table of Contents.
6. Verify that the results in the Timing Analysis Report are satisfactory.
7. Open the Chip Planner by clicking the corresponding tool bar button.
8. Verify that the placement results in the Chip Planner are satisfactory.

1-30 Compilation Log Files
AN-780

2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Figure 1-12: Floorplan and Placement Results for the Modified Intel Arria 10 Custom Platform

Updating Your Custom Platform to Target a Different Device
If you want to target a different device variant that is based on but not included in an existing Custom
Platform, update your Custom Platform accordingly.

Targeting a Device that Has a Migration Path in the Intel Quartus Prime Software
A migration path in the Intel Quartus Prime software allows you to migrate from Device A to Device B if
they have the same package size (for example, F45 (1932 pins)).

To update your Custom Platform, perform the following tasks:

1. Change the target device in your Intel Quartus Prime project by editing the top.qsf file.
2. Edit the device.tcl file to specify the new target device.
3. Change the device model file listed in the in board_spec.xml file. You may find the device model file

for the target device in the Intel Quartus Prime software installation directory. Prior to updating the
Custom Platform, the device model file is 10ax115h3f34e2sg_dm.xml.

4. Regenerate the Custom Platform.

Targeting a Device that Has a Different Package Size
To target a device that has a different package size from the current device, you must edit the top.qsf,
flat.qsf, and base.qsf Intel Quartus Prime Settings Files that are in the Custom Platform.

AN-780
2018.10.30 Updating Your Custom Platform to Target a Different Device 1-31

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

To update your Custom Platform, perform the following tasks:

1. Change target device in the Intel Quartus Prime project by editing the top.qsf file.
2. Comment out any location constraints and any PR regions in the flat.qsf and base.qsf files.

Location constraints and PR regions will be recreated when you rebuild the new package variant.
3. Edit the device.tcl file to specify the new target device. Change the device model file listed in the

board_spec.xml file. You may find the device model file for the target device in the Intel Quartus
Prime software installation directory. Prior to updating the Custom Platform, the device model file is
10ax115h3f34e2sg_dm.xml.

4. Regenerate the Custom Platform.

Migrating the Custom Platform between Different Intel Quartus Prime
Software Versions

Ensure that the version of your Intel Arria 10 Custom Platform matches the versions of the Intel Quartus
Prime Pro Edition software and the Intel FPGA SDK for OpenCL.

Custom Platform Automigration for Forward Compatibility
The automigration feature updates an existing Intel-preferred Custom Platform for use with the current
version of the Intel Quartus Prime Pro Edition software and the Intel FPGA SDK for OpenCL.

Important: Automigration is more likely to complete successfully if your Custom Platform resembles an
Intel FPGA SDK for OpenCL Reference Platform as closely as possible.

The following information applies to a Custom Platform that is version 14.0 and beyond:

• To update a Custom Platform for use with the current version of the Intel Quartus Prime Design Suite,
which includes the Intel FPGA SDK for OpenCL, do not modify your Custom Platform. The
automigration capability detects the version of your Custom Platform based on certain characteristics
and updates it automatically.

• If you have modified a Custom Platform and you want to update it for use with the current version of
the Intel Quartus Prime Design Suite, implement all mandatory features for the current version of the
Custom Platform. After you modify a Custom Platform, automigration can no longer correctly detect
its characteristics. Therefore, you must upgrade your Custom Platform manually.

A successfully-migrated Custom Platform will preserve its original functionality. In most cases, new
features in a new version of the Intel Quartus Prime Design Suite will not interfere with Custom Platform
functionality.

When the Intel FPGA SDK for OpenCL Offline Compiler compiles a kernel, it probes the board_
spec.xml file for the following information:

• The version of the Custom Platform, as specified by the version attribute of the board XML element.
• The platform type, as specified by the platform_type parameter of the auto_migrate attribute within

the compile XML element.

Based on the information, the SDK names a set of fixes it must apply during Custom Platform migration.
It applies the fixes to the Quartus Prime project that the Intel FPGA SDK for OpenCL Offline Compiler
uses to compile the OpenCL kernel. It also generates an automigration.rpt report file in the SDK
user's current working directory describing the applied fixes.

1-32 Migrating the Custom Platform between Different Intel Quartus Prime Software
Versions

AN-780
2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

The automigration process does not modify the installed Custom Platform.

Note: If automigration fails, contact your local Intel field applications engineer for assistance.

Customizing Automigration
You and the Intel FPGA SDK for OpenCL user both have the ability to disable the automigration of an
installed Custom Platform. In addition, you may choose which named fixes, identified by the SDK, you
want to apply to your Custom Platform.

Disable automigration in one of the following manners:

• If you are a board developer, within the compile XML element in the board_spec.xml file, set the
platform_type parameter of the auto_migrate attribute to none.

• If you are an SDK user, invoke the aoc --no-auto-migrate command.

To explicitly include or exclude fixes that the SDK identifies, in the board_spec.xml file,
subscribe or unsubscribe to each fix by listing it in the include fixes or exclude fixes
parameter, respectively. The include fixes and exclude fixes parameters are part of the
auto_migrate attribute within the compile element. When listing multiple fixes, separate each fix
by a comma.

Refer to the automigration.rpt file for the names of the fixes that you specify in the include
fixes and exclude fixes parameters.

Overall Summary
To successfully execute the OpenCL design flow, you must create and modify a Custom Platform correctly
to suit your system. By following the guidelines outlined in this application note, you can modify a
Custom Platform efficiently.

AN-780
2018.10.30 Customizing Automigration 1-33

Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL Altera Corporation

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

Document Revision History for Compiling and Customizing an Intel Arria
10 Custom Platform for OpenCL

Document Version Intel Quartus
Prime Version

Changes

2018.10.30 18.1 • Changed base.qdb to base.qar throughout.
• Changed a10gx_ref_16.0 to a10gx_ref_18.1 throughout.
• Changed ALTERAOCLSDKROOT to INTELFPGAOCLSDKROOT

throughout.
• Changed the device model file from 10ax115h3f34e2sge3_dm.xml

to 10ax115h3f34e2sg_dm.xml throughout.
• Rebranded the following occurrences:

• Arria 10 to Intel Arria 10
• Altera SDK for OpenCL to Intel FPGA SDK for OpenCL
• Altera to Intel
• Altera Offline Compiler (AOC) to Intel FPGA SDK for OpenCL

Offline Compiler
• Qsys Pro to Platform Designer
• LogicLock to Logic Lock
• TimeQuest Timing Analyzer to Timing Analyzer
• Quartus Prime Pro Edition to Intel Quartus Prime Pro Edition

• Updated the titles of guides to point to the rebranded Intel FPGA
SDK for OpenCL guides.

• In Modifying the freeze_wrapper.v File on page 1-28, fixed a typo
error in step 2 and added a missing entry in the code block.

Date Version Changes

December 2016 2016.12.09 Converted content to DITA with minor editorial changes.

October 2016 2016.10.21 Initial release.

1-34 Document Revision History for Compiling and Customizing an Intel Arria 10 Custom
Platform for OpenCL

AN-780
2018.10.30

Altera Corporation Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

Send Feedback

mailto:FPGAtechdocfeedback@intel.com?subject=Feedback%20on%20Compiling%20and%20Customizing%20an%20Intel%20Arria%2010%20Custom%20Platform%20for%20OpenCL%20(AN-780%202018.10.30)&body=We%20appreciate%20your%20feedback.%20In%20your%20comments,%20also%20specify%20the%20page%20number%20or%20paragraph.%20Thank%20you.

	AN 780: Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL
	Contents
	1. Compiling and Customizing an Intel® Arria® 10 Custom Platform for OpenCL
	Introduction to Custom Platforms
	OpenCL System Architecture
	Hierarchical Structure of the Intel Arria 10 GX FPGA Development Kit Reference Platform's Hardware
	Intel Quartus Prime Software Revisions Describing the Custom Platform
	Descriptions of the Intel Arria 10 GX FPGA Development Kit Reference Platform Files
	Location of the Intel Arria 10 GX FPGA Development Kit Reference Platform

	Intel FPGA SDK for OpenCL and User Environment Setup
	Specifying the Intel FPGA SDK for OpenCL User Environment Variable Settings
	Verifying the Windows Intel FPGA SDK for OpenCL User Environment Variable Settings

	Specifying the Intel FPGA SDK for OpenCL User Environment Variables on Linux
	Verifying the Linux Intel FPGA SDK for OpenCL User Environment Variable Settings

	Intel Arria 10 Custom Platform Project Setup and Customization Procedure
	Custom Platform Versioning
	Board XML Files
	The board_env.xml File
	Creating the board_env.xml File

	The board_spec.xml File
	Creating the board_spec.xml File

	Customization Flow
	Compiling a Kernel without Regenerating the Custom Platform
	Preparing an Existing Custom Platform for Customization

	Intel Arria 10 Custom Platform Customization Example
	Modifying the board.qsys File in the Custom Platform
	Opening an Existing Intel Quartus Prime Project and the board.qsys Platform Designer System Design
	Adding the Avalon-ST Single Clock FIFO Component into the Platform Designer System
	Connecting the Avalon-ST Single Clock FIFO Component's Exported Signals in the Top-Level Platform Designer System

	Modifying the Kernel (freeze_wrapper.v and board_spec.xml)
	Opening an Existing Intel Quartus Prime Project and the kernel_system.qsys Platform Designer System Design
	Adding an Avalon-ST Adapter Component into the Platform Designer System
	Connecting the Avalon-ST Adapter Component's Exported Signals in the Top-Level Platform Designer System
	Modifying the board_spec.xml File
	Modifying the freeze_wrapper.v File

	Updating the Top-Level I/O Ring with the Modified board.qsys and freeze_wrapper.v Files
	Updating the Original Custom Platform Directory with the New Custom Platform Modifications
	Compilation Log Files
	Analyzing the Results from Compilation

	Updating Your Custom Platform to Target a Different Device
	Targeting a Device that Has a Migration Path in the Intel Quartus Prime Software
	Targeting a Device that Has a Different Package Size

	Migrating the Custom Platform between Different Intel Quartus Prime Software Versions
	Custom Platform Automigration for Forward Compatibility
	Customizing Automigration
	Overall Summary

	Document Revision History for Compiling and Customizing an Intel Arria 10 Custom Platform for OpenCL

