VCS Simulation Basics

Learning Objectives

‘ -
> 15 minutes

Unit 1

VCS Simulation Basics
37489-000-S31

After completing this lab, you should be able to:

e Generate a VCS simulation executable by compiling an
existing Verilog design using VCS

e Simulate the operation of the Verilog design by executing
the simulation binary executable generated by VCS

e Determine whether or not the Verilog design passes
verification by reading the console messages generated
by the Verilog system task calls in the Verilog source code

1-1

Lab 1

Getting Started

You will be using the following carry-select 8-bit adder for this lab:

. add8.v

cin [

a[7:0] :
. - a dd4v + sum(7:0]
BI7:0] :_\ (0] i i ——

! b[O] | fav —=—/~A—1

| few =t i

; b[1] | fav A

i a[2] e |

E b[2] | fav ﬁi% i

|l J—— i

bi3] v | fa.v ﬁ%

! \a[7:4] I J\ :

D addd.v) ;

Figure 1-1: 8-bit Carry Select Adder Block Diagram

Our goal is to use this simple design to take you through the fundamentals of the
two-step VCS simulation process. This lab is divided into three parts. Each part
has its own associated tasks. Here's a preview of what you will be doing:

e Compile the adder Verilog source files to generate a simulation executable.
e Simulate the 8-bit adder by executing the simulation executable.

e Interpret the simulation results displayed on console to determine whether or
not the 8-bit adder is working correctly.

e In Part A, all the Verilog source files for the 8-bit adder reside in the working
directory.

e In Part B, some of the Verilog source files for the 8-bit adder are in the working
directory, and the rest are in a library directory. You will compile them and
then use a compile-time file to simplify the VCS compile command line typing.

1-2 VCS Simulation Basics
Verification with VCS Workshop

Lab 1

Figure 1-2: Flow Diagram of Lab Exercise

Compile the Verilog
source files with VCS

1y

Run simulation by
executing simv

L

Interpret simulation
results

VCS Simulation Basics
Verification with VCS Workshop

1-3

Lab 1

Part A:
1.
2.
3.
1.
1-4

The two-step Simulation Process

Task 1 Compile to Generate Simulation Executable

In Part A of the lab1, all the Verilog source files for the 8-bit carry select adder
reside in your lab working directory.

After logging on to the workstation, go into the labl Part A directory.

shell> cd vcs/labl/parta

You should see four files: fa.v, add4.v, add8.v, and addertb.v.
shell> Is

fa.v, add4.v and add8.v are the Verilog source files for the blocks shown in

Figure 1-1. addertb.v is the testbench used to check the funtionality of the
adder.

Compile the Verilog files and generate the simv simulation binary executatble.

shell> vcs addertb.v fa.v add4.v add8.v

When the compilation is done, you should see the message

Simv generation successfully completed

Task 2 Run Simulation

Run the testbench and simulate the design by executing simv.

shell> simv

When the simulation is done, you should see the message

$finish at simulation time 13107200
VCS Simulation Report
Time: 13107200
CPU Time: 0.490 seconds; Data structure size: 0.0 Mb
Mon May 22 09:58:26 2000

(Note: your date & time will be different)

Indicating that the simulation has completed. The CPU time used and the
memory used during the simulation are also reported.

VCS Simulation Basics
Verification with VCS Workshop

Lab 1

Task 3 Check Simulation Results

You should also see the following printout generated by Verilog system task calls
embedded in the testbench.

*** Testbench Successfully completed! ***

This verification run was successful! In Lab 2 we will see how to generate
messages to help us debug code errors.

Task 4 Create Simulation Executable with Different Name

The VCS default simulation executable file name is simv. You can direct VCS
to generate a different executable name by using the —o switch.

Recompile the adder design, this time, generate a simulation executable called
addertest.

Compile the Verilog files and generate the simv simulation binary executatble.
(please note that the switch is the letter “0” not the number “0)

1. shell> vcs addertb.v fa.v add4.v add8.v —o addertest

Check the content of the parta directory.

2. shell> Is

You should see 6 files including the simulation binary executable addertest.

Execute this simulation binary to make sure that the simulation results remain the
same.

3. shell> addertest

You should once again, see the following print out generated by the testbench.

*** Testbench Successfully completed! ***
$finish at simulation time 13107200
VCS Simulation Report
Time: 13107200
CPU Time: 0.490 seconds; Data structure size: 0.0 Mb
Mon May 22 10:08:21 2000

VCS Simulation Basics 1-5
Verification with VCS Workshop

Lab 1

Part B:

1-6

Working with Library Directories

Task 1 Compile & Simulate using Design Library Directory

In Part B of the labl, we have moved fa.v and add4 . v into a library directory.
The new file directory structure now looks like the following:

User_login_directory

labl lib

I I I I
partb e fa.v add4.v

addertb.v add8.v
The fa.v and add4 . v modules are now modules within the library directory
lib.
Go to labl Part B working directory.

shell> cd ../partb
shell> 1Is

You now should only see two files: add8.v, and addertb.v.

Compile the design again. Only, this time, we need to reference the library
directory file.

You will also use the —R switch as a shorthand to execute simulation immediately
after compilation.

shell> vcs addertb.v add8.v -y ../../lib +libext+.v -R

Notice that because our library files have the . v extension, the +1 1bext switch
is required to get vcs to search the . v extension files.

The source file contents have not changed, only the physical placement of the file
has changed, you should see identical simulation results as in part A.

VCS Simulation Basics
Verification with VCS Workshop

Lab 1

Task 2 Compiling with —f File Switch

Simplify the command line entry by using the —F compile-time switch. First
create a file which contains the names of all the source files or libraries for the
design. When compiling the design, reference this file with the —F switch.

1. Use any editor you are comfortable with and create the file “adder . ¥”
containing the following:

addertb.v
add8.v
-y ../../lib +libext+.v
Compile and simulate the design by using the —F switch as follows:

2. shell> vcs —F adder.f -R

The source file contents have not changed, only the physical placement of the file
has changed, you should see identical simulation results as in part A and part B.

You are done! Compilation and simluation using VCS is very simple.

Try out some of what you’ve learned by answering the following questions.

Can you embed the —R switch in the adder.ffile? ..o,

Can you use the —v switch instead of the —y switch? How?cccccoveviveivcnenen.

VCS Simulation Basics 1-7
Verification with VCS Workshop

VCS Debugging Basics

Learning Objectives

45 minutes

~rd

Unit 2

UNIT

VCS Debugging Basics

37489-000-S31

After completing this lab, you should be able to:

e Debug an existing Verilog design using Verilog system
task calls.

e Debug an existing Verilog design using VCS UCLI
features

2-1

Lab 2

Getting Started

2-2

Y ou will once again be using the following carry-select 8-bit adder:

. add8.v

cin R

a[7:0] | !
TE— Ez q(_j_4V ! sum|[7:0]
ﬂi.\ a[o] : i A

| b[0] C | fav —A—1 |

| e == i

i b[1] | fav —~A—]

| faz ==t i

| b[2] | fav A

| Ras) = i

5 b[3] | fav A4 |

s R

i \al7:4] | \L ;

i Bl74] add4.v 0 !

Figure 2-1: 8-bit Carry Select Adder Block Diagram

We have embedded errorsin thelab files. The goa isto use the debugging
techniques presented during lecture to locate and fix the errors. The block
diagram that you will see iswhat the Verilog code intended to implement.

Thislab isdivided into two parts. Each part has its own associated tasks.

Here'sapreview:

Compile & simulate the adder to note what the errors are.

In Part A, you will insert Verilog system task callsinto the design files then
compile, simulate and interpret the Verilog system task call outputsto try to pin
point the error. Y ou will repeat this process until the error islocated and
corrected.

In Part B, you will compile with UCLI debugger enabled. Y ou will use the
UCLI interactive simulation control to step through the execution of the code
and locate the source of the error. You will correct the error and simulate to
confirm that the correction works.

VCS Debugging Basics
Verification with VCS Workshop 11

Lab 2

Figure 2-2: Flow Diagram of Lab Exercise

Compile the Verilog
source files with VCS

Start simulation by
executing simv

Stop simulation at
error point

{ =
{ J
{ —— }
2
)

Modify source code
to correct error

1L

Compile and simulate
to confirm correction

VCS Debugging Basics
Verification with VCS Workshop 11

Lab 2

Part A: Debugging with Verilog System Task Calls

Task 1 A useful VCS Switch

Go into the lab2 Part A directory.

1. shell>cd ../../lab2/parta

Starting this lab, you will use an assortment of compile and run-time switches. In
case, you forgot what these switches are, here’ s a quick way to get a reminder:

2. shell> vcs -h

This command will give you alist of commonly used VCS compile-time and run-
time switches, along with a brief explanation of their function.

Task 2 Compile and Run First-Pass Verification

Compile and simulate the carry select adder.

1. shell> vcs —f adder.f -R

An error is reported:

***ERROR at tinme = 25750 ***
a=201, b =01, sum= 00; cin = 0, cout =0

With inputsa=1, b=1and cin = 0, the sum is O rather than 2. The error could
be in any one of the rtl modules. We will examine the operation of each.

o1 29 i dl:zll4
BI701 ¢) R acesy
01 ey | 20O] ul;

b[0] fa.v —71;
| e ==
i b[1] i fa.v —371; | Should be “02"
| fa | s |
b[2] | fav —+~—1 !
| fes | e |
b[3] v | fawv ﬁ%
2-4 VCS Debugging Basics

Verification with VCS Workshop 11

Lab 2

Task 3 Debugging the Error

In debugging, you must be able to trace the errors through the design. If you
chose to debug using only the Verilog system task calls, there are generally two
ways of tracing the errors. You can insert the Verilog system task calsin thertl
modules directly, or you can add the Verilog system task calls in the testbench.

It is better to add debugging statements in the testbench. There are two reasons
for this: One, the testbench istypically where you are doing results checking.
Using Verilog system task calls along with the result checking routines can
effectively give you a breakpoint capability. Two, for performance reasons, you
want to avoid re-compilation. By placing debugging statementsin only the
testbench, you can restrict the re-compilation to just the testbench file.

Y ou will modify the testbench to follow the error through the design hierarchy.
First, you will ook at the testbench to see where you should place the Verilog
system task call. Enter the following UNIX command:

1. shell> noreaddertb.v

Design Under
Test (DUT)

instantiation nodul e addert b;

reg [7:0] a_test, b_test;
wire [7:0] sumtest;
reg cin_test;
Useful Verilog system Wie colt_test;
task call for monitoring all reg [17:0] test;

activities of an operation :
P <« add8 ul(a_test, b_test, cin_test, sumtest, cout_test);

Input stimulus initial
(We will see a better if (!S$test$plusargs(“nonitoroff”))
method of managing $nonitor ($tine, " % + % = %; cin = %, cout = %",
input stimulusin lab3) a_test, b_test, sumtest, cin_test, cout_test);
Result checking. hni t a
Thisiswhere insertion of begi n .
for (test = 0; test <= 18 hiffff; test = test +1) begin

$display system task calls cin test = test[16];
will help the debugging a_test = test[15:8];

process the most {b test = test[7:0];
#100;
L if ({cout_test, sumtest} !== (a_test + b_test + cin_test)) begin
The $finishis used to $di spl ay("***ERROR at tinme = 90d ***", _$tine);

terminate the smulation $display("a = %, b = %, sum= %; gin =%, cout = %",
I?fter anherror'lﬁ'd?ecﬂststed. a_test, b _test, sumtest, c¢fn_test, cout_test);
you change thisto $stop $finish;
you created a breakpoint — End
at the error state. end
<€ $display("*** Testbench Successful conpl eted! ***");
Y ou should always have a / enif' ni sh;
message to tell you that the endrodul e
simulation has completed. |If
you don'’t see this message,) .
your simulation may be Usage of $time to display the
caught in an infinite loop simulation time can be very

VCS Debugging Basics helpful in debugging 2.5

Verification with VCS Workshop 11

Lab 2

2-6

The best insertion point isright after the detection of the error. Insert more
$display system task calls hereto follow the error through the design hierarchy.
First take alook at what is happening in the add8 module.

2. Addthefollowingthreelinesinto addert b. v

$di splay(“\nln add8(ul)”);
$display(“a = %, b = %, sum= %; cin = %, cout = %",
ul.a, ul.b, ul.sum ul.cin, ul.cout);

if ({cout_test, sumtest} !== (a_test + b_test + cin_test)) begin
$di splay("***ERROR at time = 90d ***", $tine);
$display("a = %, b = %, sum= %; cin = %, cout = %",
a test, b_test, sumtest, cin_test, cout_test);

$f i ni sh;
end

Compile and simulate the adder again to see the results in the add8 module level.

shel | > vcs —f adder.f -R

The result from this insertion of $display is asfollows:
In add8(ul)
a = 00000001, b = 00000001, sum = 00000000, cin = 0, cout =0

Bit[1] of the output of add4(ul) should have been al. Instead, it is erroneously
calculated as 0. Go into add4(ul) to see what’s happening.

ul
add8.v
cin T o T i
: ul |
a[7:0] i
01 b{?-O} ________ a q(_j_4_.y__ I sum[7:0] 00
— a[0] 1 ¢ el 0 !
i b[0] 1 i bioi fa.v |—sumio] i //1 i
i a[l] T 0
! b[1] 0 ! ,..fav -)
| a[2] 0 | —FPhus | ™~
i b[2] 0 é hi?i fa.v |sum[] i //1 0 i Should be “1”
| a3 | (Eus |
! b{3} 8 ! 2 f aumzy /O i
| o) Y T |
i I out . _____ i i

VCS Debugging Basics
Verification with VCS Workshop 11

Lab 2

4. Insert thefollowinginaddertb. v.

$di splay(“\nln add4(ul)”);
$display(“a = %, b = %, sum= %; <cin =%, c = %, cout = %",
ul.ul.a, ul.ul.b, ul.ul.sum wul.ul.cin, ul.ul.c, ul.ul.cout);

$di spl ay("\nln add8(ul)");
$display("a = %, b = %, sum= %; cin = %, cout = %",
ul.a, ul.b, ul.sum ul.cin, ul.cout);

$f i ni sh;
end

Create a breakpgint here by changing the $f i ni sh system task call to $st op.

5. Changethis$fi hi sh to$st op.

With this modification, every time an error is detected, the results listed in the
$di spl ay will be printed and the testbench will be halted at this time step.

Compile and run the testbench again.

6. shell> vcs —f adder.f -R

When VCS encounters the $st op system task call we embedded, it puts you into
the CLI debugger. You will seethe CLI prompt C1>.

Take alook at the $display message first:

In add4(ul)
a = 0001, b = 0001, sum= 0000, cin =0, ¢ = 001, cout =
ul
add8.v
rmr T hl
O ul |
i A add4.v | | sum[7:0]
i 1 > cin i (| 00
! : a[0] | 0
i 1 E b[0] fa.v sum[0] Q i //1 i
| | : |
0 O gt —— 1 o |
E 0 i 0 1] fa\< sum[1] Q . #1 i
| | " |
L 0 0 p® ‘\0\
| 0 0 fa.v |sum2] 0 L/ |
; : b[2] /1 i Should be “1”
i YT !
i 0 - ald - B0 | / 0 i
| | ! |
Y : 0 i fav mumd A !
| | ! |
: e e Jeout o _____ i :
[} [}
VCS Debugging Basics 2-7

Verification with VCS Workshop 11

Lab 2

2-8

The Isb operation looks okay, however, the second Isb has a problem. It looks
like the carry-in is not being added.

Continue the simulation to the next error point and seeif you can deduce this

really isaproblem. Please continue the ssmulation with “.”. Before continuing,
try some other CLI commands to seeif they work.

Type the following at the CLI prompt:

Cl> .

The simulation should continue to the next error point and stop. Y ou should see:

In add4(ul)
a = 0001, b = 0011, sum= 0010, cin = 0, c¢c = 001, cout =0
ul
add8.v
r - T Tt T a
— o i
i ' add4.v I sum([7:0] 00
1 o o [
1 a
r : el ! i
1 pjof fav sl 0/ | _ Should be“0”
0 ! 0 g — |
¥ : aly 0 |
E 0 i o fai@ i
| | ! |
. i 0 Q k2 ! |
| — o)> : 0 |
: 0 i bi2] fa.v :
| | ! |
oo 0 Q k[3] | '
- ! a[3] - o I -
0 | 0 fav sumfy 0 //1 i Should be “1
i T Tout . __________ | i

Try the®.” MINI CLI command two more times and record the results. Y ou will
begin to notice that the problem appears to be in how the fa module handles the

carry-in.

Exit the MINI CLI command mode.

Cl> quit

Display the content of the fa.v file on the console.

shell > nore fa.v

nodul e fa(a, b,
i nput a, b, cin;

cin,

out put sum cout;

cout);

VCS Debugging Basics
Verification with VCS Workshop 11

Lab 2

assign {cout, sun} = a + b;
endnodul e

Do you see the problem? Edit f a. v to fix the problem then re-compile and
simulate to verify that your correction works.

Did the smulation take a while to complete? Why?

Re-simulate with the “monitoroff” plus argument. Thiswill tell VCSto skip the
$monitor lines in the testbench.

add8 ul(a_test, b_test, kin_test, sumtest, cout _test);
initial
if (!$test$plusargs(“nmonitoroff”))
$rmonitor ($tinme, “ % + % = %; cin = %, cout = %",
a test, b _test, sumtest, cin_test, cout_test);
initial
10. shel | > simv +noni t orof f
Isthere a difference in the simulation speed?
Excessive use of message passing will slow down simulation. When you need

faster simulation speed, the first thing to do is to remove the unnecessary message
passing statements.

VCS Debugging Basics 2-9
Verification with VCS Workshop 11

Lab 2

Part B: Debugging with VCS UCLI Debugger

Task 1 Compile and Run First-Pass Verification

One thing you might have noticed in part A, isthat debugging by using Verilog
system task call insertionsisalot of work. Y ou are constantly executing the
complete modify-compile-simulate-verify loop. Not only isthe data entry time
consuming, every other step in this debugging loop is aso time consuming. In
part B, we will use the UCLI command set to ssimplify the debugging process.

In part A, you needed to use pen & paper to help you to diagnose the problem.
UCLI simplifies, but does not eliminate the need for pen & paper.

Go to the lab2 Part B directory.

1. shell>cd ../parthb
Once again, compile and simulate the adder to seeif it’sworking properly.
2. shell> vcs —f adder.f -R

Notice thereis an error at time 50.

***ERROR at tinme = 50 ***
a =00, b=00, sum= 10; cin = 0, cout =0

$finish at sinulation tine 50

777777777 o addertby
CiN_IESt {-— = TR , :
a_test ! ! i
00 W\ add8.v ! !
00 ——\ a[3:0] ! i
. sum[3:0 [|
A N EEY add4.v 130 e / :
| | o4 | Should be *00""!
i 7] IO zero_add_cin i |
NS sum_0[7:4 : i
P b[7:4] add4.v Rt i :
; | c8 0 ; i
i Il one_add_cin i i
: sum 17:4\ : !
add4.v = i cout 0 !
| | c8 1 ! i

2-10 VCS Debugging Basics

Verification with VCS Workshop 11

Lab 2

Task 2 Compile with UCLI Debugger Switch Enabled

Re-compile, thistime, enable the UCLI debugger.

1. First, add ahard breakpoint inadder t b. v by modifying the file as follows:

if ({cout_test, sumtest} != {a_ test + b_test + cin_test)) begin
$di splay(“***ERROR at tinme = 9%0d ***”, $tinme);
$display("a = %, b = %, sum= %; cin = %, cout = %",

Change to $st op :
K a test, b_test, sumtest, cin_test, cout_test);

Compile & simulate with UCLI enabled.

2. shell> vcs —f adder.f —R —debug_all -ucli

When VCS encounters the $st op system task call we embedded, it puts you into
the UCLI debugger. You will seethe UCLI prompt ucl i %

Task 3 Debugging with UCLI Debugger

When the UCLI debugger isinvoked, you are placed at simulation time O.

$stop at tinme O
ucli %

If you forget what UCLI commands are available, try the following to get a quick
summary of the UCLI commands:

1. ucli%help
To find out where we are in the design hierarchy enter:
2. ucli% scope

The scope is testbench module adder t b.

To get to the problem area enter:

3. ucli%run

***ERROR at tinme = 50 ***
a =00, b=00 sum=10; cin =0, cout =0
$stop at time 50 Scope: addertb File: addertb.v Line: 25

VCS Debugging Basics 2-11
Verification with VCS Workshop 11

Lab 2

Take alook at what signals are defined in adder t b.
4. ucli % show

sum t est
cout _test
a_test

b test
cin_test
t est

ul

List al the signal§/ports/scopes, and so on. To see value of signal that are of
interest, usethe get command.

5. ucli%get sumtest -radi x hex

'h10

The sum_test busisincorrect. Trace the sum_test signal to locate the problem.
Moveintotheul(add8) module usingthe scope command.

6. ucli% scope ul

addertb. ul
7. ucli% show -ports -val ue -radi x hex

a ' hoo

b ' h0O

cin 'h0O

sum ' hl0

cout 'hO0O
In debugging, you often need to print out the values of the same set of variables
multiple times. Creating an alias for this commonly executed task will make
things much easier. Once we have created the alias, executing it isassimple as
just typing in the alias name.

8 wucli%alias vars show -value -radi x hex a b sum
sum O sum1l cin c4

9. ucli%vars

a ' hoo
b ' h0O
sum ' h10
sum 0 ' hO
sum1l 'hl
cin 'h0oO
c4 'ho

2-12 VCS Debugging Basics
Verification with VCS Workshop 11

Lab 2

Y ou can see the details of the error here. The 2:1 mux should select the sum_0
value of “0” but it selected the sum_1 value of “1”. This may be the problem.

cin_test e L L L e R PR R
00 a_test |
00 b test ' 0
_E\ 0 |add4.v sumi3:0]
N -
i | c4 0
i [7:4] 0 ? zero_add_cin
. a[7:
S mEy sum _0[7:4] 0
N : :
| | c8 0
! 1
i 0 Il one_add_cin
0 |add4.v sum 1174
i c8_1

Leave the UCLI window asis (DO NOT exit UCLI). Open anew UNIX

window and take alook at the add8.v file.

10. shel |l > nore add8.v

Take alook at the mux code. Theinputsto the mux are reversed. In fact, both
the sum and the carry mux have the same error.

Assi gn
Assi gn

a[7:4]

b[7.4]

sun{ 7: 4] = c4?sum 0: sum 1;
cout = c4?c8 0:c8 _1;
?zero_add_cin 0 4
c
addd.y sum_O[?:éH/—-Q\\l\
1 o (/' /zl ;1 sum(7:4]
[— — \\1 /4
—
| one_add_gi / <
7
add4.v \}/ , 0 cout
A 81 N /1
/

The dotted line shows what fhe source code implemented. The intended
implementation is the solid line.

DO NOT fix theerror yet. Go back into the UCLI debugger window.

VCS Debugging Basics

Verification with VCS Workshop 11

2-13

Lab 2

2-14

Fortunately, you can emulate a correction without leaving the UCLI environment.
If you change carry-in of the sum_0 adder to “1” and change carry-in of the
sum_1 adder to “0”, you will have effectively corrected the problem.

1 zero_add_cin

a[7:4] I sum. 0[7:4] \I\c4
b[7:4] add4.v —
8 0 0 ; sum[7:4]
[- /4
1
? one_add_cin <:]:::
1[7:4
addd.y ———= [7:4] 0 / cout
: c8 1 /1
-

Notice what the current value of the zero_add cin and one_add cin signals are.

11. ucli % show zero_add cin one_add cin -val ue

zero_add cin O
one_add cin 1

Forcethe zero_add cinsignal toa*“1” and the one_add_cin signal toa“0".

12. ucli% force zero add cin 1
13. ucli% force one_add cin O

Totakealook at al the values, usethe “pr var s” diasthat you created. You
have not, however, included zer o_add_ci nandone_add_ci n when you
created the aias. Because they are needed to view all values, you will need to add
them to the command line.

14. ucli % vars zero_add cin one_add cin

a ' hoo

b ' h0O

sum ' h10

sum 0 ' hO

sum 1l 'hl

cin 'h0O

c4 'ho

zero_add cin 'hl
one_add _cin 'hO

The carry-in values have changed, suni 7: 4] remainsthe same. Thisis because
we have not advanced the simulation time to allow for the execution of the new
values. You are going to advance the simulation time by 10 time increments.

15. ucli % run 10s

VCS Debugging Basics
Verification with VCS Workshop 11

Lab 2

60 s
Take alook at the values now.

16. ucli % var s

Now, al values should be correct. Return to the testbench level and verify that
the adder is working properly.

17. ucli % scope -up

18. ucli % show a_test b_test cin_test cout_test sumtest -
val ue

a test 0

b test 0

cin test O
cout _test 0
sumtest O

These are the correct results. Set a breakpoint where ¢4 in modul e add8 changes
from ‘0’ to ‘1 and seeif thisworks.

19. ucli % stop -posedge ul.c4

1
20. ucli % run

Stop point #1 @ 26400 s;

Y ou have advanced the simulation from 60 to 26400 without encountering an
error. Takealook at the values.

21. ucli % show a_test b_test cin_test cout_test sumtest —
val ue

a test 1

b test 8

cin test O
cout _test 0
sumtest 8

Isthisright?

V CS encountered the transition of ¢4 from ‘0’ to ‘1’ and stopped the simulation at
that point. There may, however, till be other events in addition to these that have
not yet been encountered. In this specific case, the 4-bit MSB (sum 1 in

adder t b. ul) addition takes place after the transition of the ul.c4 signal. The
current value for sum_test, therefore, has not been updated yet. What you are
seeing is the previous value of sum_test.

VCS Debugging Basics 2-15
Verification with VCS Workshop 11

Lab 2

22.

23.

24,

Y ou need to advance the simulation to at |east the next time step to see the full
effect of all eventsin the current time step.

ucli%run 1

26401 s
ucli % show a_test b_test cin_test cout_test sumtest -
val ue

a test 1

b test 8

cin test O
cout _test O
sumtest 9

Now thislooks right.
Remove the breakpoint and continue the simulation.

ucl i % stop

/ - posedge addertb.ul.c4
Breakpoint

number

2-16

26.

Note:

e can remove a breakpoint by deleting its breakpoint number.

25. ucl i % st op -del@e 1

1
Resume the simulation.

ucli % run

*** Testbench successfully conpleted! ***

addertb.v, 30 : $st op;
Y ou have successfully detected the error and worked around it in the simulation.
If you get tired of re-typing the same commands over and over again, use the log

file as areference to generate a script file. Thiswill ssmplify your debugging
command entries.

We have aready generated a script file for you. In thisscript file, the commonly
used aliases are defined and the emulated carry-in fix commands are executed.

Remember thisisnot areal fix! Itisused only to alow simulation to continue
without leaving the UCLI environment.

VCS Debugging Basics
Verification with VCS Workshop 11

Lab 2

Restart the simulation.

27. shell> sinv —ucli —i test.s

You can seethat zer o_add_ci n and one_add_ci n have been set to the
emulated values. Try the aliastb.

28. ucli%thb

Thisaiasworks! Let'ssimulate.

29. ucli % run

Congratulations! Exit UCLI and take alook at the simulation log file. Thelog
file should show you everything that you’' ve done during the simulation session.

30. shell > nore ucli.key

Does the content look familiar? Use the content of thisfile as areferenceto
generate your script files.

Y ou are done with part B. Continue to part C.

VCS Debugging Basics 2-17
Verification with VCS Workshop 11

Lab 2

Part C: Getting Help

Task 1 Submitting Files for Help

If you ever need to get help from the VCS support team, there are two switches
that will make working with the support staff go alot smoother. They are—I D
and —Xman=4. Let’'s see what these switches generate.

Y ou do not need to change the directory.
Enter the following at the UNIX prompt:

1. shell> vecs —-ID > id.txt; nore id.txt

Y ou should see a summary of the VCS version being used and workstation OS
information. Thiswill help the support staff to quickly focus on issues relevant to
the specific VCS version and workstation OS.

When phone support does not resolve your issue, your next plan of action should
be to submit atestcase for the Synopsys engineers to play with, use the —Xman=4
switch for this purpose.

Enter the following at the UNIX prompt: (to simplify the command typing, the
file script is aready written for you)

2. shell> vcs —f adder.f —Xman=4: |s

Y ou should see that the file tokens.v has been generated. Take alook at it.

3. shell> nore tokens.v

Do you see al the modules of thedesign inthisfile? ...,

Note: PLI filesarenotincludedint okens. v. You will need to submit them
separately.

2-18 VCS Debugging Basics
Verification with VCS Workshop 11

Debugging with DVE

Learning Objectives

30 minutes

~rd

Unit 3

UNIT

Debugging with DVE

After completing this lab, you should be able to:
e Debug an existing Verilog design using DVE GUI.

3-1

Lab 3

Getting Started

e You are handed this design, told there'sabug init, and to fix it. The usual.

o ThisisaFIFO written in Verilog with a Verilog testbench. The testbench detects bugs
with checkers.

e It prints output and terminates simulation upon failures which we will debug with DVE.

e The FIFO uses count to determine how many entries are in the FIFO and to determine
empty and full. Thereisahead and tail pointer that shows where to write and read from,
respectively.

e |If you ever get lost and need to back up to the beginning, the original .v and .f filesarein
the ./start_over directory. Copy themto ".", then go back to the COMPILE AND RUN
step. (can use cleanup script)

FIFO REQUIREMENTS

The testbench has its own counter, count_checker, to determine how many entries arein the
FIFO and to determine empty and full.

The checkers implemented in the testbench cover the following requirements:

1. FIFO count always equals TB count_checker

2. If count_checker is empty, empty flag must be asserted.
3. Never adlow underflow
4

. Never alow overflow

COMPILE AND RUN

The first thing you decide to do is compile and run thisdesign in VCS.

Since you will debug in DVE, you compile with the "-debug” flag and have $vcdpluson; in your
testbench code.

% vcs -debug -f runl.f (can use run_debug script)

% simv

Y ou notice the message:

FAILURE: Empty flag missed at time 250000000000.000 ps. Exiting test.

$finish at simulation time 261000000000.000 ps
Thisiswhat we will debug.

DEBUG THE EMPTY FLAG BUG

WeEell start up DVE and open the vedplus.vpd simulation result file.
% dve &

File -> Open Database... In the dialog, select vedplus.vpd. Click Open.
The hierarchy pane shows test_fifo.

3-2 Debugging with DVE
Verification with VCS Workshop

Lab 3

The Design dropdown menu shows the name of the displayed file, V 1=vcdplus.vpd
Expand test_fifo, and you can see components of this design.

Display the testbench signals in a Wave window.

Select New -> Wave Window from the Window menu. A new wave window opens.
In Hierarchy pane, select test_fifo. Notice its signals are displayed in the Variable pane.

File Edit Wiew 3Simulatcr Sighnal Scope Trace Window Help
JJ Dx“ls“ﬁ'-@ %“"-"E—:F il Y -~
IE = [2]
=0

Wi =vedplus vpd jl:il:i - I* "I (g
Hierarchy Tyg || variable Value | Type
+ B test fifo (test fif. Mo 0 check_last £ Feg

-1 clk £ Reg

+ 0 count _checker[3:0] B Reg

4 data_in[31:0] 5 Reg

4 data_out[31:0] 3 Wire

i ® depth[31:0] 5 Parameter

3 1 dst_in[7:0] 3 Reg

4 rodst_out[7:0] 5 Wire

emptyp £ Wire

L fllp s wire

0 readp + Reg

0 rstp * Reg

+ 0 =src_in[7:0] + Reg

+n- sro_out[7:0] * Wire

e writep + Reg

Right click on test_fifo to view the Hierarchy context menu.
Select Add to Waves.
All signalsin test_fifo are added to the Wave window.

Notice at the bottom of the main DVE window is the Console pane. In the console pane, you see
aLog, History and Errors/Warnings tab. Each action that you have done in DVE has been logged
to thispane asa Tcl command. Y ou can enter Tcl commands at the command prompt. The
content of these tabs are also saved in history logs in the current directory.

Debugging with DVE 3-3
Verification with VCS Workshop

Lab 3

L]
= dve> gui li=t action -id Hier.1 {test fifo.Ul} -type [Scope]
dve> gui li=t =elect -id Hier.l { {test fifo.Ul} [test fifo.Ul} }
dreax gui_list_action -id Hier.l {test_fifo.Ul} -type {Scope}
dwrex gui_list_select -id Hier.1l i {test_fifo.Ul} {test_fifo.Ul} i
dve> gui list action -id Hier.l {test fifo.Ul} -type [Scopel
4]
WLog AHistory AErrorsMwarnings J
e = I

Back to figuring out that empty flag bug...

Asyou can seein the Time field units at the top of the windows, the timescaleis currently 1s,
and our ssimulation was in 100ps. This could be modified viaView -> Set Time Scale... But, well
just leaveit.

J_|T|me| Elx13|J_||;
|briE B &4

Zoom around in Wave window.

In the Wave window, we see atimescale bar at the top of the wave window and one at the
bottom.

The bottom one always shows all time available in the open database.

The top one shows you the portion that is currently visible in the wave window.

DVE — Toplevel.2 — [Wave.1]

B File Edit Wiew Simulator Signal Scope Trace Window Help =l =
Ui 250 x1s| [& []| % W WX | aal LR ® 0 ot |||« *[anyEoe 1
[Pizaas//NEEREE| aae[agga/n)qx §] =
- j|3|:>’ =
MName |Va|ue m
BT

- @ FULL[31:0] 5 | [

- 1 tail[2:0] 3ha-=3hd | (R

4 [head]2:0] 3k |

- & EMPTY[31:0] o/ [

-® DEPTH[1:0] |

-B-dst_in[7:0] B'NZZ | | —

- sro_out[7:0] &§'h03->&'h0S

+-data_out{31:0] 32'W0000 3333

B clk St0->St1

- - emptyp Stl-=3M

-B-are_in[7:.0] 8'hzz

~B-data_in[31:0] el grrrrirrrrd

- 1 i[31:0] %

-dst_out[7:0] 8'h04->5'"h06

- fullp Sto

- 0 count[2:0] 4'h1-=4'h0 K

D~ readp St []

- B-retp Sto |||||||||50|CI|||||||||‘10|00|||||||||||v

L | 2l | ,

Be Wave.1 |
Ready [1 [feroup 3] 7

3-4

Debugging with DVE
Verification with VCS Workshop

Lab 3

Since our bug was at time 250, let's zoom over there using the bottom timescale.
On the bottom timescale, click down at about time 240 and drag through 250 and let go.

The top timescale and waveform now shows about 240 to 260. Thisis much quicker than
scrolling.

Put a marker at the time of failure.

Let's put amarker at our problem time. In waveform area, right click and select "Create Marker"
from the context menu.

Y ou get amoving cursor that you can place at time 250 by left clicking atransition at time 250
on awaveform (ex: data_out[31:0]).

It will snap the marker to the nearest transition.

Notice the bottom timescale has a white vertical line through time 250. This denotes the marker
we just created.

Notice also that there is apink line at time 0 in the bottom timescale. Zoom into that pink line
using the bottom timescale click and drag technique.

The top timescale now displays from time 0 and you see cursor C1=0 in the marker pane.

Clisthe application time, it is displayed in the Time field at the top of the windows.

Y ou can move C1 by entering atime in the Time field, likewise, you can change thetime in the
time field by moving C1.

Why is thisinteresting? This C1 application time is the time attached to the values when you
annotate values in source, or schematics.

WEe'll use these features soon.

Let's move the application time, C1, to 250 where our marker is.

Zoom back over to the white M1 marker using the bottom timescale. In the Waveform pane, | eft
click on atransition at time 250.

Left clicksin the waveform pane snap C1 to the nearest transition.

Now the Time field shows 250. The time our empty flag bug showed up.

We can see that signal emptyp in the wave window isindeed O at time 250 and the checker says
it should be 1.

Show connections of emptyp in path schematic window.

In main window Variable pane, select emptyp. Click the Show Path Schematic Window button
in the toolbar buttons, or select New -> Show Path Schematic from the Window menu. A path
schematic window opens with the connections of emptyp in the testbench.

Debugging with DVE 3-5
Verification with VCS Workshop

Lab 3

N
| | 7a\ |

. . = - [~ .
L‘jwunltcs[_ﬂm U1 p5@1?@1|plver‘ T, e o lemPlyp est_ifo “po@28sy
\/

test fifo.empt~ emplyp

test fifo *p2@ao

B count_checker

What do we have here?

e Thecyan line shows emptyp connections with solder pointsin the testbench.

e The green components labelled "* p9@285" and "* p2@68" show process 9 at line 285
and process 2 at line 68, respectively. These represent blocks of source code.

e The orange component shows connections that cross alevel of hierarchy.

Since emptyp comes out the top, we can tell it represents connection to a child component.
Hold your mouse over the hierarchy transition component to see the tooltip.

It shows that it connects with test_fifo.Ul.emtpyp.

We need to see where emptyp comes from, so double click on the orange hierarchy transition.
Now we are looking at 2 levels of hierarchy, the processesin the testbench AND aprocessin
test fifo UL

Zoom in alittle using the Zoom In 2x toolbar button.

Click the Pan Tool button and grab and drag the schematic with the pan tool so you can see the
processin test_fifo.U1, called * p5@126.

(Or use the window scroll bars)

Change back to the Selection Tool.

Annotate pin values in schematic and expand path.
Select Scope -> Annotate Values, now we see the St0 value for emptyp.

To get the value for count, we will need to expand the path schematic. Click to select the count
port on the process.

Right click and select Expand Path from the menu. Zoomin.

Now we see the source code component connected to count, in addition to its value, 4'h0. The
FIFO isempty.

Show source code from schematic.

In the path schematic window, select the source code block with count as input and empty as
output, that is, the one called * p5@126.
It is now highlighted in white. Now right click and select Show Source from the menu.

3-6 Debugging with DVE
Verification with VCS Workshop

Lab 3

DVE source window pops forward highlighting text on line 126.
The source code is an always block. Let's annotate values here (if they are not already present).

Lest hts
125 f#f First, update the empty £
12&

4 *hi
127 if {count == EMPTE)
4 hil

1z2a emptypp = 1°b1;
k0

123 elze

130 emptyp = 1°b0;
k0

131 end

13z
133
134 £ Update the full flag
135 alwaps @{count) begin

Select Source -> Annotate Values. Vaues are annotated in green, below the signals.
We see count is empty and based on this code, it should have gone through the if, not the el se.
The"if" condition, count == EMPTY, must have failed. Let's verify that.
Searching text in source code. Double click theword EMPTY so that it is highlighted.
Now click the Find... toolbar button. (Looks like binoculars)

It opens the Find tool. Select Match case, so that we don't stop on emptyp and click Find Next.
We have amatch on line 24. We see that EMPTY = (1<<3), the same as the FULL parameter.

Here's our bug.

It should be EMPTY = 0. Close the Find dialog.

Edit source to fix the bug.
Select Scope -> Edit Source.

DVE chose the editor based on your EDITOR environment variable.
Changeto EMPTY = 0; and save it.

Recompile and simulate in DVE to verify bug fix.

Recompile the design outside of the GUI - the same as you did in Compile and

Run. (run_debug)

Back in DVE, Select Simulator - Setup. A new window opens, select OK which will runsimv in
interactive mode.

The current design is Sim=inter.vpd, and V1=vcdplus.vpd is still there in the menu.
Let'sdrag test_fifo from Hierachy Window to the Wave Window over "New Group".
Click ontest_fifo with the middle mouse button and drag it to the wave window.

Debugging with DVE 3-7
Verification with VCS Workshop

Lab 3

i)
=] blawve,1 | -]
File Edit “iew Signal Trace Help
|J|T|me| 0 x13|_!|g

Si

B WX | gafemrry] ey [anvEune v+ | R SR UL & & [EF ¢

Tarme I\fblue
.. [] rstp
[+~ rdata_out[3..
- rdst_out[7:0)
ok IVE - Toplewel.l - [Hier,1]
Fle Edit Wiew Simulator Source Schematic Trace “Window Help
- [sre_in[7:0] T . L
lrme [o xts|[c @[l % B B OX | ghEvey <[A S @ & & @ E|lE of
.. [] check_last -
- E=S==0-1-1-1IF2
: I — i st0 s5tl &'haz g2'haz S
- I ready Rl roenter v B EFEI;«F;I:[: E sre_ont, dst_out, data ouk, emptpp, £
i o : Lo 8 hon 8 hon =00 0000 St 5
Hetaleie v . “"?”363'* : = 7 input. olk;
+1 R i [chieck_last “ti)
- [Hew Group l 0 ek g input r=tp;
. st
- 0 count_checker [3:.0 3 input [7:0] A
+-] data_in[31:0] #'haz
.i...n_data_gut[g]:u] 10 input [7:0] dst_in;

(Now we have one group with the vcdplus.vpd signals in it and another with the interactive
signals in it.

Notice that the signals in Group2 are all gray since we have not yet run the simulation)
Our C1 cursor is now hooked up to Sim time and is back to O.

Let'srun it to 260 to seeif it fixed that empty flag bug.

Enter 260 in the Time field and hit Enter. Sim runs to time 260, C1 and app time are 260.
Scroll the waveform display to find our interacitve "emptyp" signal in the Group2 signal group.
Verify itsvalueis 1 at the time of our marker, time 250. The bug is fixed.

Close the buggy simulation results.

Let's close the post-processing, vedplus.vpd database.
File-> Close Database. Select V1 .../vedplus.vpd. Click OK.
Leave the interactive one open, inter.vpd.

RUN SIMULATION IN DVE

Let'slook for more bugs.

To run the simulation forward, click the Continue button in the main window toolbar.
Another FAILURE!

Y ou see the VCS simulation output in the Log tab of the Console pane when you are running
simulationsin DVE.

Thistime, is prints and exits ssmulation:

FAILURE: Counter mismatch at time 16800000000000.000 ps! Exiting test.

$finish at simulation time 16900000000000.000 ps

3-8 Debugging with DVE
Verification with VCS Workshop

Lab 3

DEBUG THE COUNTER MISMATCH BUG

Find the checker that printed the error message.

In Hierarchy pane, double click thetest_fifo testbench to popul ate the source window.
Click the Find toolbar button at the top of the window.
Enter "Counter mismatch" and click Find Next to take us to the checker.

We see that the comparison that failed was the tb counter not equal the FIFO counter and it was
detected at the negedge of clk.

In Wave window, zoom full with Zoom Full toolbar button.. Locate the count_checker signal in
the wave window.

Middle mouse click on that signal to place the red insertion bar below it.

Any signals added to the Wave window, will be added at this point.

In Source window, select the text of the checker from the if to the end.

(test fifo. Ul count != count_checker) begin

RA 4'hi

$dizsplap ("FAILURE: Counter mismatch at Lime
#10 $finish;

%L! Exiting test

|

Right click and select Add to Waves from the context menu.

Now we have count and count_checker (our mismatched counters in the Wave Window.)

Compare count signals to find the mismatch.

Select the count and count_checker in the Wave window, so that both are highlighted (use Ctrl or
Shift for multiple selection).

Select Signal -> Compare Signals... The compare tool is automatically populated with the signals
you selected.

The top shows the database and signals to compare (you can also compare instances, not just
signas). The middle shows the options for comparison, and the bottom is a summary.

Just click OK.

Il writep 5t0

+ I count_checker[...

+ - f count_checker[... mizmatch

+ I count[3:0]

+ 0 count_checker[... 411

The comparison result is added in red to the Wave window at the insertion point.

Debugging with DVE 3-9
Verification with VCS Workshop

Lab 3

Search forward to get to mismatch.

Select the compare result signal in the wave window.

Move your C1 cursor to time 0 and then click the Search Forward toolbar button in the Wave
window. (blue, right arrow)

The Search is controlled by the "By:" dropdown menu, which is Any Edge, by default.
The C1 cursor moves to time 1670, the time of the first mismatch. Zoom in around that C1
cursor using the top timescale.

We see that the FIFO count is 0 and the testbench counter is 1 at thistime.

Get drivers of the count signal.

Double click the waveform transition of the count signal at time 1670, when it transitioned to O.
This opens the Drivers and Loads window. It shows that there are four driversin one source
file.

The Source window pops forward with driver icons on the lines that drive count.

Annotate values and step through drivers to find the active one.

In the main window, click the Annotate Vaues toolbar button, or select Source -> Annotate
Vaues. (may already be shown)
These values are tied to C1 cursor, now 1670 s, since we searched to the first mismatch.

Our first driver "count <= 0;" We see that the "if" condition is"rstp == 1'b1", and the annotated
value showsrstp is 0 now. So that's not it.

3-10 Debugging with DVE
Verification with VCS Workshop

Lab 3

ivicioe | Help

i | ﬂiar mismatch” | &,

& o 4 7 || @|BcE B B &

= S
stl
— 0z if {rstp == 1°bl} begin
zt0
— | Bx103
4 hi
104 end
10k glse begin
106 caze {{readp, writepl)
5tl stl
alny 2'b00: count <= count;
4 hi 4 ki
i0s 2'b01:
103 ff WRITE
110 if {lfullp)
st0
{add1 count <= count + 1;
4 hil 4 hi
112 2'b10:
113 £f BEAD
114 if {lemptppy
3tl
4115 count €= count - 1;
4 hil 4 hi
11k 2'b11:
117 S
Oills _.I
b' ﬁfu:u.v

Lets try the next. Select Trace -> Drivers/Loads -> Next In This Instance, or select the Next In
This Instance toolbar button.

Now we're in the "case" statement. Looking at the case condition ({ readp, writep}), we see from
the annotated values (St1 and St1) that the "2'b11" case applies.

Click the Next In This Instance toolbar button until the cyan current driver icon is on the source
linethat isinside the 2'b11 case.

That is, count <= count -1;, the concurrent read and write. (line 117)

When writing and reading, we should not be changing the counter.

Thisis our bug.
It should be count <= count;.

Edit source to fix the bug.

Select Scope -> Edit Source.
Fix the source code as described above, and saveit.

Recompile and simulate in DVE to verify bug fix.

Again, you will need to re-compile the design outside of the GUI. Thistime however, you will
need to use the following:

vcs-debug_al -f runl.f (canuserun_debug_all script)

Debugging with DVE 3-11
Verification with VCS Workshop

Lab 3

Back in DVE, Select Simulator -> Setup. A new window opens, select OK which will run simv
in interactive mode.

The signals (including the signal compare) are till availabe in the Wave window so we can
verifiy thefix.

Set a breakpoint on the line we just fixed to verify it.

Click onthe + in front of test_fifo in the Hierarchy to expand it.

Double click thetest_fifo.U1 in Hierarchy to populate the source window.

Scroll down to the line we edited (or use Find to jump toit.) (line 117)

Green dots to the left of the line number denote breakable lines during an interactive simulation.
Set a breakpoint by clicking the green breakable line on the source line we just edited (count <=
count;)

It turns red to show that we have a breakpoint set here.

wooLuy 1L L ENp P

“hi

@ 11t count <= count - 1;
‘hi ‘hl
11k 2'b11:
117 A toncurcent read and write.
118 A4 count 4= connt - 1;
@ 113 covnt <= count;
‘hl ‘hl
1zn endcase
121 end
122 end

122

Now click the Continue toolbar button to run the simulation.
The simulation stops at the breakpoint, we see from annotated values that count is now 1. Fixed.

Disable the breakpoint and continue running.

Click on the breakpoint (red dot) so that it becomes a hollow red dot, denoting that it has been
disabled.
Now click the Continue toolbar button to run the simulation.

It runs to completion without anymore checker errors. Y ou're done.

File -> Exit to exit DVE.

DEBUG THE COUNTER MISMATCH BUG using SVA

Setup design, compile and setup simulation

We want to use SVA to debug the simulation for the counter mismatch, so we need to remove
the fix and recompile.

This has been automated in the a script, so simply run run_debug_sva.

After the compile completes, start DVE with: dve&

3-12 Debugging with DVE
Verification with VCS Workshop

Lab 3

Back in DVE, Select Simulator - Setup. A new window opens, select OK which will runsimv in
interactive mode.

Y ou will notice that another window, Assertions, also opens. We will be using thiswindow in
this session.

Simply click the continue (blue down arrow) in the banner to run the simulation to find the error.
In the log window you will see the same Counter mismatch error as well as the SVA assertion
error at time 1680.

emptyp=1

FAILURE: Counter mismatch at time 1680000000000.000 ps! Exiting test.

time = 1680000000000.000 ps

"fifo.sva', 18: test_fifo.mychk.a3: started at 1680s failed at 1680s
Offending '(count == count_checker)’

$finish at simulation time 1690000000000.000 ps

Follow the checker that printed the error message.

Fi the Assertion window is not visible, click Window -> Panes -> Assertion to see the assertion
debug information.

In Assertion window, double click the a3 assertion to popul ate the wave window.

_Ioix

File Edit Wiew Help

IS Hi=

jet-t1h L Sim=inter. vpd

First Fail Ended | First Fail Started | Delta | Instance Assertion Dffending

1880 1680 0| test_fifo.mychk a3 {count == count_chedker)

) Azsertion Failure Summary f Assertions |

|Fi|1:er: Time Range: (0 - MAX) Atempts: (F: 3; 5:0; 1: 0} ‘é

In the Wave window you will see the a3 assertion with the green up arrows.

Y ou should see the first assertion failure (red arrow) at time 1680.

To seewhy this assertion isfailing, we'll ook at the parts of the assertion.

We have count and count_checker (our mismatched counters) in the Wave Window.

Since we are checking this assertion on the negative edge of clk, the previous values (time 1670)
are the ones that show the failure.

Debugging with DVE 3-13
Verification with VCS Workshop

Lab 3

ol m o A A S A
E8 Hle Edit “ew Simulator Signal Scope Trace Wincow Help ;LQI}J
1l oo0 k13| | & [S [¢ e X | dal S aslee ¢ R |
iR B S NEERNEN | A0 AaHGE Q|4 % 4 =]
Marme I Walue | 1650 ']?E_J
— Groupl
Ll 53 Failure A | N | S = | S\
: é----!@clk_event ED || 1 1 1 1 15
J;---D—count[S:D 4ho
’;:--D—count_chl an1 (|
: o B ratp sto ||
Tew Group
500 1000
1|11-11111-]”-1:'1|1-]1|11-“1‘11|-J|1|1'..I'II-

& | v | i 1)

aeve 1 |

ol | | WA M

Double click on the transition of count.
Thiswill open the Drviers and Loads window, but since al of the drivers are in the same source

filewelll look at that file. Select Close.
Now in the sourcecode window we see the first driver for count.

Thisis exactly where we were in the previous debug session, so we could continue in the exact
same manner.

Using SV A reaches the same problem with with fewer/simpler steps, even for thissimple
example.

SUMMARY

We detected, found, fixed, and verified 2 bugs in this Verilog FIFO using the following
features of DVE.

e Hierarchy, Wave, Source, Path Schematic, Console windows
e Post and interactive debugging.

e Quick Timescale zooming in Wave window

e Cursors and Markers and application time.

o Connectivity across hierarchy in path schematic window

e Expand paths in path schematic

e Annotated values and zooming in schematics

e Crosslinking of schematic to source code

e Crosslinking of wave to source code

3-14 Debugging with DVE
Verification with VCS Workshop

Lab 3

e Crosslinking of hierarchy to source code
e Searching text in source

o Edit source and recompile sim

e Multiple databases

e Waveform comparison

o Edge searching in waveforms

o Get driversin waveforms

« Annotated valuesin source code

e Step through driversin source code

e Interactive simulations with breakpoints and disabled breakpoints.
e SVA assertion reports

e Crosslinking of assertions to wave and source code

Debugging with DVE 3-15
Verification with VCS Workshop

Debugging simulation
mismatches

Learning Objectives

30 minutes

~rd

Unit 5

UNIT

Debugging Simulation Mismatches
Ver 1.0

After completing this lab, you should be able to:

e Locate race condition in an existing Verilog design using
the race checker utility in VCS

e Locate asimulation mismatch in an existing Verilog design

5-1

Getting Started

Y ou will continue to use the Select Adder for this lab.

In the lab files, there are errors caused by race conditions. The goal isto use VCS
to identify and locate the cause of the race conditions. Once, corrected, you will
re-compile and re-simulate to verify the functionality of our corrections.

Here's apreview of what you'll do:

e Inpart A, you will compile and simulate to seeif the adder is operating
correctly. Then, we will use the +race compile-time switch and re-compile
and re-simulate the adder. By examining the race.out file and locating the
race condition in the source code, you will be able to make the proper
correction.

e Inpart B, you will compile with $vcdpluson to generate aVPD dump file.
Examining the differences in DVE, you will locate the race condition. The
source code will be modified. Finally you will re-compile and re-simulate to
verify the correctness of the adder operation.

5-2 Debugging Simulation Mismatches

Figure5-1: Flow Diagram of Lab Exercise

Compile & simulate
without debug
switches to see if
design has errors

Compile & simulate
with +race switch

Examlne race. out and

source code to locate

and correct cause of
error

gt

(s
E
[I }
A
e

generate a VCD file

1l

Locate error by using
vediff utility
comparing the VCD
file to know aood file

Modify source code
to correct error

Compile and simulate
to confirm correction

Figure5-1: Flow Diagram of Lab Exercise

Debugging Simulation Mismatches
Verification with VCS Workshop

5-3

Part A: Debugging with +race Switch

Task 1 Verify Adder Functionality

Thefirst step of any debugging process isto compile and simulate the design
without using the debugging switchesto seeif there are any errors.

Go into lab5 part A directory.
1. shell> cd ../l ab5/parta
2. shell> vcs —f adder.f -R

There are errors being reported.

***EFRROR at tinme = 0 ***
a =00, b=00, sum= xx; cin = 0, cout =x

Task 2 Re-Compile and Re-Simulate with +race Switch

With race conditions, it is generally difficult to see from the error message that
the cause is Verilog race condition. When things don’t ook quite right, you
might want to quickly check to seeif the error is caused by race condition.

1. shell> vcs —f adder.f —R +race

Thiswill generatear ace. out file.
Take alook at the race.out file after the simulation has compl eted.

2. shell> nore race. out

At time O, three signals are reported being written and read at the same time.

O "error_count": read addertb (addertb.v: 32) & wite addertb (addertbh.v:21)
"sumtest": wite addertb.ul (add8.v: 14) && read addertb (addertb.v: 35)
0O "cout _test": wite addertb (add8.v: 15) && read addertb (addertb.v: 35)

o

Whereis the race condition in each of these cases?

3. Correct the race condition in the source code, repeat step 1 & 2 to make sure the
race condition isresolved. (Hint: The race condition isin the testbench)

5-4 Debugging Simulation Mismatches

Part B: Debugging with $vcdplustraceon Task

Task 1 Verify Adder Functionality

Again, you want to verify the operation of the design first.
Go into lab5 part B directory.

1. shell>cd ../parthb

2. shell> vcs —f adder.f -R
There are errors being reported.

***ERROR at tinme = 50 ***

a =00, b=00, sum= xx; cin =0, cout =0
***ERROR at time = 150 ***
a =00, b=01, sum=00; cin =0, cout =0

Task 2 Re-Compile and Re-Simulate with +race Switch

Check the possibilities for race conditions by running a race report.

1. shell> vcs —f adder.f —R +race

Take alook at the race.out file after the simulation has compl eted.

2. shell> nore race. out

At time O, four signals are reported being written and read at the same time.

"sum 0": read addertb.ul (adder.v: 21) && wite addertb.ul (adder.v:15)
"sum 1": read addertb.ul (adder.v: 22) & wite addertb.ul (adder.v:16)
"sumtenp": wite addertb.ul (adder.v: 14) && read addertb.ul (adder.v:23)
"c4": wite addertb.ul (adder.v: 13) && read addertb.ul (adder.v: 25)

O O O O

Let’s keep these in mind and dump aVCD+ file.

Task 3 Generate VPD dump file

In the testbench, sections of the code are already written for dumping VPD file.
Take alook at it.

Debugging Simulation Mismatches 5-5
Verification with VCS Workshop

5-6

The relevant sections are as follows:

initial
begi n

“ifdef vcdpl usdunp
$di splay("\n*** VCD+ file dunp is turned on ***\n");
$vcdpl uson;

#1000;
$vcdpl usof f;
“endi f
end
initial
begi n
if (error_count == 10) begin
“ifdef vcdpl usdunp
$vcdpl usof f;
“endi f
end

The $vedpluson task can be enabled with a +definet+vedplusdump compile-time
switch.

The #1000 and $vcdplusoff are used in the first section of the code to control the
size of thereferencefile. Thiswas done so that the size of thefile generated is
manageabl e for download from the Synopsys web site.

In the second section, VPD dumpping is turned off after ten error counts are
detected. Again, thisis done to manage the VPD file size.

In your own debugging, you might want to consider using similar mechanisms for
controlling VPD file size.

Compile and generate the VPD file.

shel | > vcs—f adder.f —.debug_all —R +definetvedplusdump

You will got error message and vcdpl us. vpd incurrent directory.

Debugging Simulation Mismatches

Task 4 Compare VCD File with Reference File

Thereisareference VCD file adready generated called “reference.dump”. You
will compare this reference file with the VCD file that you generated.

1. conver VPD to VCD

shel | >vpd2vcd vcdpl us. vpd vcdpl us. vcd
2. shell> vcdiff reference. dunp vcdpl us. vcd

vedi ff - Version X-2005. 06- SP2
Copyright (c) 1991-2003 by Synopsys Inc.
ALL RI GHTS RESERVED

vedi ff reference. dunp vcdpl us. ved
< reference. dunp: scopes: 3 signals: 18

> vcdpl us. ved: scopes: 3 signals: 18

--- addertb.sumtest --- 0 ---
< 0 00000000

> 0 XXXXXXXX

--- addertb.ul.sum--- 0 ---
< 0 00000000

> 0 XXXXXXXX

--- vedi ff summary ---
--- conpares: 70
--- diffs: 2

At time O, the adder.v generated a sum value of xxxxxxxx instead of 00000000 as
was expected in the reference file.

Recall that ther ace. out filereported sum_0 and sum_1 had potentia race
conditions. The problem islikely to be in how we generated the sum.

Task 5 Examine File Differences in DVE

Look at the differences graphically.
Invoke DVE in post-processing mode.

1. shell > dve&

Debugging Simulation Mismatches 5-7
Verification with VCS Workshop

2. SelectFil e ->Qpen Dat abase...

An Open Database Dialog window will open up.

3. IntheFilespane, select “r ef er ence. dunp” then click on Open

As soon as you do this, DVE will translate VCD to VPD file. (the trandlated file
nameis “reference.dump.vpd”)

Let’s aso open the VCD file for the DUT.

4. Inthe Open Database Dialog window select “vcdpl us. vpd” then click on
Open

Do you see that the new opened fileis given the designator
“V2=vcdpl us. vpd” inthe Open File pane near the top of the dialog window?

Look at the signalsin Waveform window.

5. Click + before “addertb” in Hierarchy pane.

The modules and the signal's now displayed in the Hierarchy pane and Variable
pane are the signals captured in the last file that you opened —vcdpl us. vpd.
Y ou can see this by looking at the title bar at the top of the Hierarchy pane.

6. Show al signalsin ul moduleinto the Waveform window, left click select “ul”
in Hierarchy pane and select “Add To Waves’ in right click menu.

Each signal in the Waveform window should have the V2 designator (leave
mouse point on signals for one second), indicating that these are the
vcdpl us. vpd signals.

Look at the DUT signals.
7. InHierarchy pane, select “V1=r ef er ence. dunp”
Look at the same set of signalsfrom ul module.

8. Drag and drop the ul module onto the “New Group” in the Waveform window

This create another group ul_1 for new group signal, you can edit group name to
ref_ul.

All the signals are identical with the exception of the sum signal. Use Zoom features
to view the appropriate amount of data.

5-8 Debugging Simulation Mismatches

Task 6 Examine Source File to Locate Error

1. Doubleclick sunf 7: 0] signa from the Waveform window(if you forget which
isfrom V2, just put your pointer on it for one second), The adder.v moduleis
opened in the source code pane.

Recall what the race.out file reported. Whereisthe error?
(Hint: thisisaform of the Continuous Assignment Eval uation race condition)

2. Correct the error then re-compile and re-simulate to verify that the error is
removed.

Debugging Simulation Mismatches 5-9
Verification with VCS Workshop

Fast RTL Verification

Learning Objectives

60 minutes

~rd

Unit 6

UNIT

Fast RTL Verification
37489-000-S31

After completing this lab, you should be able to:

e Improve simulation performance by modifying Verilog
code identified by VCS profiler utility as simulation
bottlenecks

e Compile an existing Verilog design with the +rad
compilation switch and execute the simulation binary to
demonstrate an improvement in simulation performance

6-1

Getting Started

6-2

Y ou will use the lossless codec for thislab:

Y ou will improve the simulation performance at the RTL-level viatwo methods:
changing the coding style and using V CS optimization switches.

Thislab has two parts.

In Part A, you will use the +prof utility to locate simulation bottlenecks. Y ou
will then modify the Verilog code by changing the coding style to improve the
simulation performance.

Here's apreview:

e Profile codec ssimulation with VCS profiler and record CPU run time
e Modify codec Verilog code segment identified as bottleneck

e Re-simulate and record CPU run time

e Repeat the first three steps until simulation speed is acceptable

In Part B, you will use the +rad VVCS optimization switches to improve
simulation performance.

Here'sapreview:

e Simulate codec design and record CPU run time
e Compile & simulate codec with +rad switch and record CPU run time

Fast RTL Verification
Synopsys Verification with VCS Workshop

Figure 6-1: Flow Diagram of Lab Exercise

Part A

Compile codec with
+prof switch

1

Modify code segment
identified as
simulation bottlenck

4Ll

e
Compile & simulate
modified codec and

record CPU time

-

~

Part B

Compile & simulate
codec and record
CPU time

1l

Compile & simulate
codec with +rad
switch and record
CPU time

1l

Repeat until CPU time
is acceptable

Fast RTL Verification
Verification with VCS Workshop

6-3

Part A: Using VCS profiler

Task 1 Record codec Simulation CPU Time

Go into the lab6 directory.

1. shell> cd ./l ab6/parta

Compile and simulate the codec design without any optimization.

2. shell> vcs —f codec.f CAMv fileio.o —R

3. Record CPU time & Data structure size
(@ o U I (] 0 1< RSP

DAA SITUCIUINE SIZE oottt e e e e e e e ettt e e e e e e e e e e e e e e e e e e e aaeneeeeeeeens

For an input stimulus file of 323 bytes, this simulation time seemstoo long. Let's
improve this ssimulation time.

Task 2 Profile Simulation CPU Time with +prof

First, run the profiling utility to see how simulation timeis being spent.

1. shell> vcs —f codec.f CAMv fileio.o —R +prof

Task 3 Evaluate codec Simulation Performance

Once the ssmulation run completes, examine the vcs.prof file.

1. Open vcs. prof withan editor

In Top Level View, the design uses greater than 90% of the CPU run time. This
is good, you want simulation executing design operations rather than overhead.

6-4 Fast RTL Verification
Synopsys Verification with VCS Workshop

TOP LEVEL VI EW

TYPE %otal tine
DPI 0. 00
PLI 0. 00
VCD 0. 00
KERNEL 0. 00
MODULES 100. 00
PROGRAMS 0. 00
PROGRAM GC 0. 00

In Module View, the cam module requires most of the simulation time. This may
or may not be a problem. Since this codec relies heavily on processing datain the
cam module but it is an area to watch out for.

MODULE VI EW
Modul e(i ndex) %otalti ne No of Instances Definition
cam (1) 98. 67 2 CAM v: 5.
Addr _gen (2) 1.14 2 codec. v: 347

In the Module to Construct Mapping, we start to see something alittle more out of wack. The
simulation time within the cam module is spent in the always block at lines 80-83 of the CAM.v
source code. This could be a problem.

1. cam
Construct type %otal ti me %\bdul et i ne Li neNo
Al ways 40. 80 41. 35 CAM v : 80-83.
Al ways 32. 26 32.69 CAM v : 36-61.
Al ways 12. 33 12.50 CAM v : 90-92.
Al ways 11. 95 12.12 CAM v : 86-88.
Al ways 0.76 0.77 CAM v : 66-76.
Conbi nat i onal 0.57 0.58 CAMv : 5, 31, 33.
Fast RTL Verification 6-5

Verification with VCS Workshop

Please take alook at lines 80-83 of the CAM.v source code.

2. Open CAM v with an editor and locate line 80

Here' s what this section of the code looks like:

al ways @din or match_search or match3 _dly or
bitO or bitl or bit2 or bit3 or bit4 or bit5 or bit6 or bit7)
for (I =0; | <= 4095; | = 1+1)
matchl[I] = ((match3_dly[l] | match_search) & (din == {bit7[1], bit6[I],
bit5[I], bit4[l], bit3[1], bit2[l], bitl[I], bitO[I]}));

Thislooping structure is not efficient.

Task 4 Modify CAM.v module and Save as CAM1.v

1. Substitute the always block with the following:

assign matchl = (match3_dly | {4096 {match_search} }) &
(({4096 {din[0]} } ~~ bit0) & ({4096 {din[1]} } ~" bitl) &
({4096 {din[2]} } ~* bit2) & ({4096 {din[3]} } ~* bit3) &
({4096 {din[4]} } ~ bit4) & ({4096 {din[5]} } ~* bit5) &
({4096 {din[6]} } ~" bit6) & ({4096 {din[7]} } ~* bit7));

Y ou will also need to change the matchl from reg type to wire.

2. Make the changes and saveto “CAM1.v’

Task 5 Compile & Simulate to Record CPU Time

Compile & simulate the codec design with the modified cam module.

1. shell> vcs —f codec.f CAML.v fileio.o —R

2. Record CPU time & Data structure size

CPU M. e,

DAA SITUCIUINE SIZE oot e e e e e e et e e e e e e e e e s e e e e e e e e e e aaenneeeeaeeens

6-6 Fast RTL Verification
Synopsys Verification with VCS Workshop

The simulation run time improved but not significantly. The bottleneck may have
just move from one areato another. Please continue to look for the bottlenecks.

Task 6 Profile codec Simulation Performance

Run the profiling utility again to see how simulation timeis being spent.

1. shell> vcs —f codec.f CAML.v fileio.o —R +prof

Task 7 Evaluate codec Simulation Performance

Once the ssmulation run completes, examine the vcs.prof file.

1. Open vcs. prof withan editor

In the Module to Construct Mapping, the simulation time in the cam moduleis
now primarily spent in the aways block, line 37-62 of the CAM1.v source code.

1. cam
Construct type %otal tine %vbdul eti nme Li neNo
Al ways 52. 37 54.79 CAML. v 38-63.
Al ways 19. 56 20. 46 CAML. v : 100-102.
Al ways 17. 67 18. 48 CAML. v : 96-98.
Conbi nat i onal 5. 36 5.61 CAML.v : 5, 33, 35, 90.
Al ways 0.63 0. 66 CAML. v 68- 78.
2. Open CAML. v withan editor and locate line 38
Here' s what this section of the code looks like:
al ways @ posedge cl k or negedge rstN)
begi n
if (!'rstN) begin
bit0 <= 0; bitl <= 0; bit2 <= 0; bit3 <= 0;
bit4 <= 0; bit5 <= 0; bit6 <= 0; bit7 <= 0;
end
else if (!IdN) begin
bi t0[0] <= din[0];
Fast RTL Verification 6-7

Verification with VCS Workshop

6-8

bit1[0] <= din[1];
bit2[0] <= din[2];
bit3[0] <= din[3];
bi t4[0] <= din[4];
bi t5[0] <= din[5];
bi t6[0] <= din[6];
bit7[0] <= din[7];

for (i =1; i <= 4095;

bitO[i] <= bito[i-
bit1[i] <= bit1[i-
bit2[i] <= bit2[i-
bit3[i] <= bit3[i-
bit4[i] <= bit4[i-
bit5[i] <= bit5[i-
bit6[i] <= bit6[i-
bit7[i] <= bit7[i-

end

end

end

1] ;
1];
1] ;
1];
1];
1] ;
1] ;
1];

i = i+1l) begin

Examine this code closely, you will notice that thisisreally just a shift operation.

Modify CAM1.v module and Save as CAM2.v

Please recode the cam modul e as follows:

al ways @ posedge cl k or negedge rstN)

begi
if

el

n
('rstN) begin

bit0 <= 0; bitl <= 0; bit2 <= 0; bit3 <= 0;
bit4d <= 0; bit5 <= 0; bit6 <= 0; bit7 <= 0;
end

se if (!ldN) begin
bit0 <= {bitO0[4094:
bitl <= {bitl[4094:
bit2 <= {bit2[4094:
bit3 <= {bit3[4094:
bit4 <= {bit4[4094:
bit5 <= {bit5[4094:
bit6 <= {bit6[4094:
bit7 <= {bit7[4094:

end

end

1.

0],
0],
0],
0],
0],
0],
0],
0],

din[0]};
din[1]};
din[2]};
din[3]};
din[4]};
din[5]};
din[6]};
din[7]};

Make the changes and saveto “CAM2.v”

Fast RTL Verification
Synopsys Verification with VCS Workshop

Task 8 Compile & Simulate to Record CPU Time

Compile and simulate codec with CAM2.v.
1. shell> vcs —f codec.f CAM2.v fileio.o —R

2. Record CPU time & Data structure size

CPU tIME. e,

DA SITUCIUINE SIZE ..o et e e e e e e e et e e e e e e e e s e e e e e e e e e e aaeeeeeaeeens

The simulation run time has decreased significantly.

Profile codec Simulation Performance

Please take one last |00k at the profile report.
1. shell> vcs —f codec.f CAMR.v fileio.o —R +prof
2. Openvcs. prof filewith editor

The simulation time is now dominated by two aways blocks.

We have increased the performance sufficiently for now. Move on and try the
effects of the optimization switches.

Fast RTL Verification 6-9
Verification with VCS Workshop

Part B: Using VCS Optimization Switches

6-10

Task 1 Record codec Simulation CPU Time

Go into the lab5 partb directory.

shell> cd ../parthb

In this lab, we have reproduced the CAM2.v module and included it in the codec.f
file. We aso madetheinput stimulusfiletest larger. It isnow seven timesthe
sizethat was used in part A. Theoretically, this should simulate seven times
slower. Asyou shall see, with the aid of performance optionsin VCS, the exact
oppositeistrue. Wewill be able to run ssmulation at a much higher speed.

Please record the simulation time without optimization switches.

shel | > vcs —f codec.f fileio.o —R

Record CPU time & Data structure size
(@ o U I (] 01 1< TR

(DL = B A g0 (o U (SR = TR

This simulation took a significant amount of time to complete. In the following
steps you will improve this situation time.

Task 2 Simulate with +rad Optimization

Try using the +rad optimization switch.
shell > vcs —f codec.f fileio.o0o —R +rad

Record CPU time & Data structure size
CPU M. e,

(DL = B A g0 (o U (SR R

Thisis quite adifference in CPU time. The improvement in simulation speed
depends heavily on your coding style and design complexity. Y our own designs
will experience adifferent speed up result.

Fast RTL Verification
Synopsys Verification with VCS Workshop

Fast Gate-Level Verification

Learning Objectives

After completing this lab, you should be able to:

e Veify the Verilog Gate-Level netlist matches the RTL-
Level simulation by compiling and ssimulating the Gate-
Level netlist with the RTL-level testbench without enabling
any optimization switch and without timing using VCS

e Demonstrate the same Verilog Gate-Level netlist when
compiled and simulated with the +rad optimization switch
exhibit an improvement in simulation performance

e Veify an existing Verilog Gate-Level netlist with timing
matches the RTL-Level simulation

‘ -
> 45 minutes

Unit 7

Fast Gate-Level Verification 7-1
37489-000-S31

Getting Started

Y ou will use aFIFO for thislab.

Here'sapreview:

7-2

Verify that the Verilog RTL code passes verification

Using the same testbench, verify that a gate-level netlist generated from the
same source code also simulates correctly.

Compile and simulate the same gate-level netlist with optimization options and
observe an increase in simulation performance.

Add back-annotation system task to source code

Compile and simulate SDF back-annotated gate-level netlist and observe that
this also simulates correctly.

Figure 7-1: Flow Diagram of Lab Exercise

Compile & simulate
gate-level netlist

Compile & simulate
gate-level netlist with
optimization options

4L

Back-annote SDF file

4L

Compile & simulate
gate-level netlist with
SDF file

e N s N R
N N

Fast Gate-Level Verification
VCS Verilog Verification Workshop

Gate-Level Simulation

Task 1 Examine Gate-level Verilog Files

Go into the |ab8 directory.

1. shell> cd | ab7

Take alook at the gate-level Verilog files created by Design Compiler.

2. shell> nore fifo32X8 gate.v

Y ou should see the gate cellsinstantiated in all the _gate.v files. These were
created through synthesis with Design Compiler with the vendor’ s technol ogy
libraries.

In order to simulate the gate-level Verilog files, you must aso have the vendor’s
Verilog smulation files. In our case, this simulation fileislocated in
vcd/lib/vendor_lib under the file namecor e. v.

Takealook at cor e. v.

3. shell> nore../lib/vendor |ib/core.v

As you scan through the core.v file, you will see both UDP (User Defined
Primitives), functional modules, and gate-level cell modules.

Where are the timing information defined?

Task 2 Compile and Simulate the RTL Netlist

Let’s verify that the RTL netlist works.
Here' s the content of fifo.f:
fifo32X8th.v

fifo_cntrl.v

fifo32X8.v

fifo_mem.v

raml6xX8.v

-P ./lib/fileio2.0/fileio.tab

Compile and simulate the RTL code.

Fast Gate-Level Verification 7-3
VCS Verilog Verification Workshop

shell > vcs —f fifo.f fileio.o —R

Record CPU time & Data structure size
CPU M. e,

DAA SITUCIUINE SIZE .o ettt e e e e e e e et e e e e e e e e e e e e e e e e e e e s aaenneeeeeeeens

Task 3 Compile and Simulate the Gate-level Netlist

Let’s verify that this gate-level netlist works.

Here' s the content of fifo_gate.f:
fifo32X8th.v

fifo32X8_gate.v

-P ../lib/fileio2.0/fileio.tab

Notice that all the RTL codes are replaced by the single fifo32X8_gate.v gate-
level netlist.

Compile and simulate the Gate-level netlist without SDF backannotation

shell> vcs —f fifo_gate.f fileio.o —R

Record CPU time & Data structure size
CPU tIME. e,

DAA SITUCIUINE SIZE .ot e e e e e e e et e e e e e e e e e e e et e e e e e e aaennneeeeeeens

Thisisaintegrity test to verify that the gate-level netlist does perform the
operation in the same way that the RTL code did. Notice that the same testbench
isused for both the RTL and gate-level verification.

But, thisis not the ideal way to perform the gate-level to RTL confidencetest. A
better way may be to use aformal verification tool like Formality,

If you really want to use VCS to check the functionality of the gate-level netlist,
use the following compile-time options.

Fast Gate-Level Verification
VCS Verilog Verification Workshop

Task 4 Compile and Simulate with Optimization Options

1. shell> vcs —f fifo_gate.f fileio.o —R +rad +nospecify

2. Record CPU time & Data structure size
(@ o U I (] 0 1< TR

(DL = B A 0 U (SR = TR

Notice how much faster the verification is?

Task 5 Back-Annotate SDF File

Let’s back-annotate the SDF file information for simulation with timing.

The only thing that you will need to do is to add the $sdf annotate system task
into the testbench. (Looks for the reserved space for this code)

1. Insert the following code in the fifo32X8th.v testbench as follows:
initial
begin
$sdf annotate(“ fifo32X8.sdf”, fifo);
end

Task 6 Simulate without Timing Check

If you are simulating your design with timing just to make sure that circuit delays
does not introduce errors and you are using a separate timing verification tool,
then, you should use the following compile-time options to get the best
performance:

1. shell> vcs —f fifo_gate.f fileio.o —R +noti m ngcheck

2. Record CPU time & Data structure size
CPU M. e,

DAA SETUCIUINE SIZE ..ot e e e e e e e et e e e e e e e e e e e et e e e e e e aaenneeraeeens

Fast Gate-Level Verification 7-5
VCS Verilog Verification Workshop

7-6

Task 7 Simulate with Full Timing Check

If you are simulating your design with full timing check then use the following
compile-time options.

shell> vcs —f fifo_gate.f fileio.o —R +neg_tchk

Record CPU time & Data structure size
CPU M. e,

(DL = B A g0 (6 U (SR = TR

Full timing verification will always take the longest time to run. Y et, it does not
guarantee full timing verification. A better approach isto use timing verification
tools for timing check and use VCS to verify circuit operations.

Fast Gate-Level Verification
VCS Verilog Verification Workshop

VCSTraining

Coverage Metrics

Learning Objectives

30 minutes

~rd

nits

Upon completion of this exercise you will be able to:

. Include coverage metrics in your VCS simulations

. Interpret the coverage metrics results and merge results from
multiple simulations

. Use the auto-grading feature of VCS with Coverage Metrics to

find a subset of test vectors that meet a user-defined coverage goal.

Coverage Metrics

¢ Part I- FSM Coverage

1. Go to the subdirectory lab8

What other types of coverage are available with VCS Coverage Metrics?

What are the vcs & simv options to invoke each type of coverage?

What option would you use to specify line and condition coverage only?

Let'stake acloser look at FSM (Finite State Machine) coverage.

1. Compile sothat FSM coverage is enabled.
VCS COMMAND LINE:

2. Rerun the simulation with FSM coverage.
SIMV COMMAND LINE:

3. Invoke cmView with FSM coverage.
CMVIEW COMMAND LINE:

In the main cmView window, left click on the FSM Coverageicon.

5. Left click on Module List to display all modules where afinite state machine was
found. Y ou should see that the CPU modul e has one state machine.

6. Double click left on the CPU module (under the List of all modules). Thiswill bring
up awindow with coverage details for the FSM in the CPU module. Double click the
Transitions tab you will see amatrix of transitions. A green check indicates the
transition was covered during your simulation. A red X indicates that the transition

Coverage Metrics 8-2

VCSTraining

was not covered. An empty (gray) box indicates that VCS found that transition was
not possible.

Which state transitions were not covered?

7. Click on the Statestab. This displays each possible state in the FSM and whether it
was covered. There are five states in this FSM and each one was covered at |east once
during the simulation run.

8. Click on the Reachability tab. This shows information about transitions between two
states through intervening states. Letslook at an example...

9. Click onthe yellow box that represents the transition from MEMORY to FETCH.
The 1/ 2 displayed in this box indicates that there are two possible transitions from
MEMORY to FETCH and that only one was covered. After clicking thistransition
you will seethat VCS has determined two possible transitions:

MEMORY ->WRITE_BACK -> FETCH (covered)
MEMORY ->FETCH (not covered)
10. Exit thecmView GUI

¢ Part Il - Merging Coverage Results and Auto-Grading

So far we have been writing coverage results into default filenames under the
simv.cm directory. For example...

simv.cm/cover age/verilog/test.line
simv.cm/cover age/verilog/test.fsm

Thisisfine aslong asthere is only one test vector to run. But what if there are
multiple test vectors? You don’'t want to overwrite the default filenames with each
new test vector that is simulated. It is more useful save the coverage results for each
simulation with a new vector and then merge the results . In this section we will
examine how to do this.

1. First clean up the directory you are working in. Make sure you have exited the
cmView GUI and then run the clean script.

2. Thedirectory CODE containsfive different tests. Copy the first test into the run
directory

cp CODE/text1 text_segment

Coverage Metrics 8-3

cp CODE/datal data_segment
3. Runavcs compile and enable al types of coverage (see “run_all” script)
VCS COMMAND LINE

Examine the contents of simv.cm/cover age. It should be empty at this point.

Run simv with al coverage types enabled. Be sure to include the option to rename the
coverage metrics report files. Usetest1 as the filename root for the report files.

SIMV COMMAND LINE

6. One by one, copy the other vectors into the run directory and rerun the simulation
with al coverage types enabled. For each simulation run, be sure to rename the
coverage report files. (A script called run_all is provided.)

What file contains condition coverage results for test5?

What file contains line coverage results for test2?

7. Wewill now merge the datatogether. At the command line type:

ves —cm_pp —cm_dir testl —cm_dir test2 —cm_dir test3 —cm_dir test4 —cm_dir tests
—Cm_name merged

Thiswill create amerging of al the 5 tests into a merged database and the merged
coverage report will be stored in "simv.cm/reports” with the filename prefix "merged”
(i.e. smv.cm/reports/merged.long_| will contain the merged coverage results from the 5
tests).

8. You can aso observe these data and do test grading through GUI. Invoke the cmView
GUI. Type:

vecs —cm_pp gui —cm line+tgl+cond+fsm —cm_dir testl —cm_name testl

Go to the “File” on the menu bar and drop down to “Open Coverage Statement”. This
will open the hierarchy and coverage window. On the coverage menu bar select “add”,
this opens the window that will alow you to add the line coverage datafor grading. In
the filter window or thru selecting, set the path for ./test2/* .line select test2.line and add
it. You can do the same steps to add other tests (test3 to test5). Close the window after
adding the line coverage. Y ou can how compare tests using the compare menu.

9. Wewill use cmView’s auto-grading feature to determine a subset of test vectors that
meet a user-defined coverage goal. From the main cmView window select

Coverage Metrics 8-4

VCSTraining

Tools -> AutoGrading
This brings up the cmAutoGrade window.

10. Click any one of the three tabs for Statement, Condition, or Toggle coverage to view
the datafor each test listed in the Test Name column.

The four kinds of coverage data are described as follows:

I ncremental datais the amount of additional coverage provided by a given test

over the previous test.
Difference datais the difference in coverage between a given test and the

accumulated total up to the previous total.
Test coverage dataisthe coverage for agiven test. That is, the data reflects the

total coverage for that test only.

Accumulated datais the cumulative result of al tests added in the current session

up to that point in the order of tests.

11. Enter 65 desired test coverage goal and select Line Coverage. Then click Run
AutoGrade The Test Grading window appears.

What subset of test vectors are required to obtain 65% line coverage?

12. Exit the cmView GUI.

Congratulations. You’'re donewith the Coverage Metrics lab!

Coverage Metrics

8-5

	lab_01_basic.pdf
	VCS Simulation Basics
	Getting Started
	Part A: The two-step Simulation Process
	Task 1 Compile to Generate Simulation Executable
	Task 2 Run Simulation
	Task 3 Check Simulation Results
	Task 4 Create Simulation Executable with Different Name
	Part B: Working with Library Directories
	Task 1 Compile & Simulate using Design Library Directory
	Task 2 Compiling with –f File Switch

	lab_02_ucli
	VCS Debugging Basics
	Getting Started
	Part A: Debugging with Verilog System Task Calls
	Task 1 A useful VCS Switch
	Task 2 Compile and Run First-Pass Verification
	Task 3 Debugging the Error
	Part B: Debugging with VCS UCLI Debugger
	Task 1 Compile and Run First-Pass Verification
	Task 2 Compile with UCLI Debugger Switch Enabled
	Task 3 Debugging with UCLI Debugger
	Part C: Getting Help
	Task 1 Submitting Files for Help

	lab_03_dve
	Debugging with DVE
	Getting Started
	FIFO REQUIREMENTS
	COMPILE AND RUN
	DEBUG THE EMPTY FLAG BUG
	Display the testbench signals in a Wave window.
	Zoom around in Wave window.
	Put a marker at the time of failure.
	Show connections of emptyp in path schematic window.
	Annotate pin values in schematic and expand path.
	Show source code from schematic.
	Edit source to fix the bug.
	Recompile and simulate in DVE to verify bug fix.
	Close the buggy simulation results.

	RUN SIMULATION IN DVE
	DEBUG THE COUNTER MISMATCH BUG
	Find the checker that printed the error message.
	Compare count signals to find the mismatch.
	Search forward to get to mismatch.
	Get drivers of the count signal.
	Annotate values and step through drivers to find the active one.
	Edit source to fix the bug.
	Recompile and simulate in DVE to verify bug fix.
	Set a breakpoint on the line we just fixed to verify it.
	Disable the breakpoint and continue running.

	DEBUG THE COUNTER MISMATCH BUG using SVA
	Setup design, compile and setup simulation
	Follow the checker that printed the error message.

	SUMMARY
	We detected, found, fixed, and verified 2 bugs in this Verilog FIFO using the following features of DVE.

	lab_05_mismatch
	Debugging simulation mismatches
	Getting Started
	Part A: Debugging with +race Switch
	Task 1 Verify Adder Functionality
	Task 2 Re-Compile and Re-Simulate with +race Switch
	Part B: Debugging with $vcdplustraceon Task
	Task 1 Verify Adder Functionality
	Task 2 Re-Compile and Re-Simulate with +race Switch
	Task 3 Generate VPD dump file
	Task 4 Compare VCD File with Reference File
	Task 5 Examine File Differences in DVE
	Task 6 Examine Source File to Locate Error

	lab_06_rtl
	Fast RTL Verification
	Getting Started
	Part A: Using VCS profiler
	Task 1 Record codec Simulation CPU Time
	Task 2 Profile Simulation CPU Time with +prof
	Task 3 Evaluate codec Simulation Performance
	Task 4 Modify CAM.v module and Save as CAM1.v
	Task 5 Compile & Simulate to Record CPU Time
	Task 6 Profile codec Simulation Performance
	Task 7 Evaluate codec Simulation Performance
	Modify CAM1.v module and Save as CAM2.v
	Task 8 Compile & Simulate to Record CPU Time
	Profile codec Simulation Performance
	Part B: Using VCS Optimization Switches
	Task 1 Record codec Simulation CPU Time
	Task 2 Simulate with +rad Optimization

	lab_07_gate
	Fast Gate-Level Verification
	Getting Started
	Gate-Level Simulation
	Task 1 Examine Gate-level Verilog Files
	Task 2 Compile and Simulate the RTL Netlist
	Task 3 Compile and Simulate the Gate-level Netlist
	Task 4 Compile and Simulate with Optimization Options
	Task 5 Back-Annotate SDF File
	Task 6 Simulate without Timing Check
	Task 7 Simulate with Full Timing Check

	lab_08_cov
	What option would you use to specify line and condition coverage only?__________
	Let’s take a closer look at FSM (Finite State Machine) coverage.
	VCS COMMAND LINE:___
	SIMV COMMAND LINE:__
	CMVIEW COMMAND LINE:_______________________________________
	VCS COMMAND LINE___
	SIMV COMMAND LINE__
	Tools -> AutoGrading
	This brings up the cmAutoGrade window.
	Congratulations. You’re done with the Coverage Metrics lab!

