
Leda
User Guide
Version 2006.06
June 2006

Comments?
E-mail your comments about this manual to
 leda-support@synopsys.com.

mailto:leda-support@synopsys.com

Copyright Notice and Proprietary Information
Copyright © 2005 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Arcadia, C Level Design, C2HDL, C2V, C2VHDL, Cadabra, Calaveras Algorithm, CATS, CSim,
Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSPICE, Hypermodel, iN-Phase, in-Sync, Leda, MAST,
Meta, Meta-Software, ModelAccess, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler,
PowerMill, PrimeTime, RailMill, Raphael, RapidScript, Saber, SiVL, SNUG, SolvNet, Stream Driven Simulator,
Superlog, System Compiler, Testify, TetraMAX, TimeMill, TMA, VCS, Vera, and Virtual Stepper are registered
trademarks of Synopsys, Inc.

Trademarks (™)
abraCAD, abraMAP, Active Parasitics, AFGen, Apollo, Apollo II, Apollo-DPII, Apollo-GA, ApolloGAII, Astro, Astro-Rail,
Astro-Xtalk, Aurora, AvanTestchip, AvanWaves, BCView, Behavioral Compiler, BOA, BRT, Cedar, ChipPlanner, Circuit
Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE,
Cyclelink, Davinci, DC Expert, DC Expert Plus, DC Professional, DC Ultra, DC Ultra Plus, Design Advisor, Design
Analyzer, Design Vision, DesignerHDL, DesignTime, DFM-Workbench, DFT Compiler, Direct RTL, Direct Silicon
Access, Discovery, DW8051, DWPCI, Dynamic-Macromodeling, Dynamic Model Switcher, ECL Compiler, ECO
Compiler, EDAnavigator, Encore, Encore PQ, Evaccess, ExpressModel, Floorplan Manager, Formal Model Checker,
FoundryModel, FPGA Compiler II, FPGA Express, Frame Compiler, Galaxy, Gatran, HDL Advisor, HDL Compiler,
Hercules, Hercules-Explorer, Hercules-II, Hierarchical Optimization Technology, High Performance Option, HotPlace,
HSPICE-Link, iN-Tandem, Integrator, Interactive Waveform Viewer, i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, JVXtreme, Liberty, Libra-Passport, Library Compiler, Libra-Visa, Magellan, Mars, Mars-Rail, Mars-
Xtalk, Medici, Metacapture, Metacircuit, Metamanager, Metamixsim, Milkyway, ModelSource, Module Compiler, MS-
3200, MS-3400, Nova Product Family, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Nova-VHDLlint, Optimum
Silicon, Orion_ec, Parasitic View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Polaris-CBS, Polaris-MT, Power
Compiler, PowerCODE, PowerGate, ProFPGA, ProGen, Prospector, Protocol Compiler, PSMGen, Raphael-NES,
RoadRunner, RTL Analyzer, Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon
Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SmartLicense, SmartModel Library, Softwire,
Source-Level Design, Star, Star-DC, Star-MS, Star-MTB, Star-Power, Star-Rail, Star-RC, Star-RCXT, Star-Sim, Star-
SimXT, Star-Time, Star-XP, SWIFT, Taurus, Taurus-Device, Taurus-Layout, Taurus-Lithography, Taurus-Process,
Taurus-Topography, Taurus-Visual, Taurus-Workbench, TimeSlice, TimeTracker, Timing Annotator, TopoPlace,
TopoRoute, Trace-On-Demand, True-Hspice, TSUPREM-4, TymeWare, VCS Express, VCSi, Venus, Verification
Portal, VFormal, VHDL Compiler, VHDL System Simulator, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
All other product or company names may be trademarks of their respective owners.

June 2006 Synopsys, Inc. 3

Leda User Guide Contents

Contents

Preface . 19

About This Manual . 19
Related Documents . 19

Manual Overview . 19
Typographical and Symbol Conventions . 21

Getting Leda Help . 22
The Synopsys Web Site . 22

Chapter 1
Leda Overview . 23

Introduction . 23
What is Leda? . 23
How Leda Works . 25
Leda Terminology . 26
Types of Leda Rules . 27
Approaches to Using Leda . 29
Using Leda in Batch, GUI, and Tcl Shell Modes . 30

Invoking Leda . 31
Switching Modes . 31
Creating Projects . 32
Opening Projects . 32
Enabling Design Query Commands . 32
Configuring the GUI . 33
Typical Leda Usage Scenarios . 34

About Design Rules . 39
Using .db Files for Checks . 39

Limitation with Gates in .db Files . 41
About Hardware-Based Rules . 42

Finite State Machine Rules . 42
Hardware Inference . 43
Set and Reset Detection in VHDL and Verilog . 49

Rules Leda Cannot Check . 50

Chapter 2
Writing and Checking HDL Designs . 51

Introduction . 51

4 Synopsys, Inc. June 2006

Contents Leda User Guide

Writing & Checking VHDL Designs . 52
VHDL Semantic Exceptions . 52

Writing & Checking Verilog Designs . 56
Verilog Semantic Exceptions . 57

Writing & Checking Mixed-Language Designs . 59
Instantiating a Verilog Module in a VHDL Architecture 59
Instantiating a VHDL Design Entity in a Verilog Module 59

Mapping Data Types . 60
VHDL and Verilog Identifiers . 63

Verilog 2001 Support . 65
SystemVerilog Support . 65
Clock Grouping Feature . 66
Netlist Reader . 68

Invoking the Netlist Reader . 68
Netlist Reader BNF . 69

Chapter 3
Modifying and Creating Rules . 71

Introduction . 71
About Rules, Rulesets, and Policies . 72
Using Configurations . 72
Configuring the Rule Wizard . 73

Saving Configurations . 73
Restoring Configurations . 73
Rule Configuration Search Path . 74
Global Checking with the Same Rule Configuration . 74

Configuring Prepackaged Rules . 74
Locking the Rule Wizard . 75
Using the Rule Wizard to Configure Rules . 77

Policy and Topic Views . 77
Configuring Rule Properties . 78

Creating New Rules . 79
Copying and Modifying Prepackaged Coding Rules . 80
Writing New Rules from Scratch . 80
Creating New Ruleset Files . 81
Creating New Policies . 81

Defining Macro Values for Rules . 82
Using Predefined Macros to Constrain Identifiers . 84
Advanced Macro Programming . 85
Constraining Max/Min Attributes to Predefined Values 85

June 2006 Synopsys, Inc. 5

Leda User Guide Contents

Exporting and Importing Policies . 86

Chapter 4
Checking Designs For Errors . 89

Introduction . 89
Invoking the Checker GUI . 90
Creating Projects to Check HDL Code . 91
Propagating Constants . 96

Constant Propagation Limitations . 98
Using the Rule Wizard to Select or Deselect Rules . 98

Using Prebuilt Configurations . 99
Policy and Topic Views . 100
Selecting or Deselecting Rules . 100
Disabling Redundant Rules . 101

Deactivating Rules . 101
Deactivating Rules with a Rule Configuration File . 102
Deactivating Rules from within HDL Source Files . 103
Deactivating Verilint Policy Rules . 104
Deactivating Rules from the Error Viewer . 105
Deactivating Rules By File . 106
Translating .leda_select Files . 106

Setting & Saving Checker Preferences . 108
Running the Checker . 109

Top Unit Tab . 109
Test Clock/Reset Tab . 110
Checkers Tab . 111

Fixing Errors Found by the Checker . 112
Reviewing Log, History, Errors/Warnings Tab in GUI 114
Displaying Error Messages for STARC Policies . 115
Getting Prepackaged Rule Help for STARC Policies 115

Sorting the Error Viewer Display . 116
Filtering the Error Viewer Display . 117

Error Report Displays . 117
Viewing the Design Report . 120
Using the Path Viewer . 121

Using Trace Forward and Trace Backward . 123
Using the Clock and Reset Tree Browsers . 126
Saving Error Reports . 127
Post-processing Batch Mode Log Files . 128

Generating Leda Summary Information (Info Report) 129

6 Synopsys, Inc. June 2006

Contents Leda User Guide

Updating Projects . 130

Chapter 5
Using the SDC Checker . 133

Introduction . 133
Leda Quality Checks . 133
Top-versus-Block SDC Checks . 133
SDC Equivalency Checks . 134
Simplified Usage Model for SDC Checker . 135
Supported SDC File Tcl Commands . 137

Specifying Design Objects . 139
Handling Errors in SDC Files . 140

Leda SDC Checker Tcl Commands . 140
Using a Tcl File For SDC Checks . 141
Defining Parameters for SDC Rules . 142

Chapter 6
Using Leda Batch Mode . 145

Introduction . 145
Basic Usage Models and Rule Types . 145
Configuring the Checker . 146

Using plibs to Set Library Logical/Physical Mapping 146
Running Leda in Batch Mode . 148

Common Command-Line Options and Switches . 148
VHDL Command-Line Options . 157
Verilog Command-Line Options . 159

Leda Batch Example Invocations . 162
Generating Log Files in Batch Mode . 163
Generating Projects in Batch Mode . 163

Verilog-only Projects . 163
VHDL-only Projects . 164
Mixed-Language Projects . 165

Checker Batch Mode Results . 166
Checker Return Status . 166
Viewing Checker Results . 167
Checking the Environment . 167

Chapter 7
Using Leda GUI Mode . 169

Introduction . 169
Invoking the Checker/Specifier GUI . 170

June 2006 Synopsys, Inc. 7

Leda User Guide Contents

Checking Your Environment . 171
Selecting a Text Editor . 172
The File Menu . 173
The Project Menu . 175
The Check Menu . 176
The Report Menu . 177
The View Menu . 178
The Window Menu . 178
The Help Menu . 178
Managing Source Files From the GUI . 181

Using Pop-up Menus in the Files Tab . 182
Managing Library Units From the GUI . 184

Using Pop-up Menus in the Modules/Units Tab . 185
Generating Log Files in GUI Mode . 186

Chapter 8
Using Leda Tcl Shell Mode . 187

Introduction . 187
Invoking Leda in Tcl shell Mode . 187
Enabling Netlist Checks . 188
Changing Leda Modes . 188
Sourcing a Tcl Script in Leda . 188
Built-in Tcl Commands . 189

Getting Help on Leda Tcl Commands . 189
Collections . 190
Current Limitation . 192
Regular Expressions . 192

Using Regular Expressions with Hierarchy . 193
Anchoring Regular Expressions . 193
Using Regular Expressions with Busses . 194

Filter Expressions . 194
Using the -filter Option . 195

Rule Tcl Command Reference . 197
is_64bit . 197
add_to_collection . 197
all_clocks . 197
all_inputs . 198
all_instances . 198
all_outputs . 198
all_registers . 198

8 Synopsys, Inc. June 2006

Contents Leda User Guide

append_to_collection . 198
create_operating_conditions . 199
compare_collections . 199
connect_power_domain . 200
copy_collections . 200
create_power_domain . 200
create_power_net_info . 201
delete_operating_conditions . 201
disable_isolation_cell_recognition . 202
enable_isolation_cell_recognition . 202
filter_collection . 202
foreach_in_collection . 203
get_all_input_boundaries_from_power_domain . 203
get_all_output_boundaries_from_power_domain . 203
get_cells . 203
get_clocks . 204
get_nets . 204
get_nth_power_net . 205
get_object_name . 205
get_power_cells . 205
get_power_down . 206
get_power_down_ack . 206
get_power_net_max_voltage . 206
get_power_net_min_voltage . 206
get_power_net_source_port . 207
get_power_net_type . 207
getn_power_net . 207
get_pins . 207
get_ports . 208
get_power_domains . 208
infer_power_domain . 209
infer_power_domains . 209
index_collection . 209
print_config_summary . 210
query_objects . 210
remove_from_collection . 210
remove_isolation_cell . 211
remove_level_shifter . 211
remove_power_domain . 211
remove_power_net_info . 212

June 2006 Synopsys, Inc. 9

Leda User Guide Contents

report_clock_gating_cells . 212
report_enable_pin . 213
report_isolation_cells . 213
report_level_shifter . 213
report_operating_conditions . 214
report_pin_voltages . 214
report_power_domain . 214
report_power_net_info . 215
report_power_pins . 215
report_power_switches . 215
reset_isolation_cell_recognition . 216
rule_deselect . 216
rule_get_parameter . 217
rule_get_selection . 218
rule_get_all_masters_from_topic . 219
rule_get_all_rules_from_master_id . 220
rule_get_all_topics . 221
rule_get_configuration . 222
rule_get_current_configuration . 223
rule_get_policies . 224
rule_get_policy_attributes . 225
rule_get_predefined_configurations . 226
rule_get_rules . 227
rule_get_ruleset_attributes . 228
rule_get_rulesets . 229
rule_get_templateset_attributes . 230
rule_get_templatesets . 231
rule_link . 232
rule_load . 232
rule_load_configuration . 233
rule_manage_policy . 234
rule_patch . 235
rule_save_configuration . 235
rule_get_current_configuration . 236
rule_set_default_configuration . 237
rule_set_predefined_configuration . 238
rule_select . 239
rule_set_html . 240
rule_set_message . 241
rule_set_parameter . 241

10 Synopsys, Inc. June 2006

Contents Leda User Guide

rule_set_severity . 247
set_clock_gating_cell . 247
set_enable_pin . 248
set_level_shifter . 248
set_operating_conditions . 248
set_pin_voltage . 249
set_power_pin . 249
set_power_domain . 250
set_power_domain_ctrl . 250
set_power_off_value . 250
set_power_switch . 251
sizeof_collection . 251
sort_collection . 251

Project Tcl Command Reference . 253
project_add_library . 253
project_build . 254
project_delete . 255
project_get_all_files . 255
project_get_file_attributes . 256
project_get_library_attribute . 257
project_get_option_attribute . 258
project_get_ports . 258
project_get_top_units . 259
project_get_unit_kinds_from_library . 259
project_get_units_from_file . 260
project_get_units_from_library . 261
project_get_working_libraries . 262
project_new . 262
project_open . 263
project_quit . 263
project_read . 264
project_record_cmd . 264
project_remove_file . 265
project_remove_library . 265
project_save . 266
project_specify_files . 266
project_specify_libraries . 267
project_specify_name . 268
project_specify_options . 269
project_update . 269

June 2006 Synopsys, Inc. 11

Leda User Guide Contents

Checker Tcl Command Reference . 271
check . 271
checker_get_design_constraints . 276
checker_get_options . 276
checker_set_design_constraints . 278
checker_set_options . 280
current_design . 282
elaborate . 283
link . 285
propagate . 286
read_constraints . 287
read_files . 289
read_sverilog . 293
read_verilog . 296
read_vhdl . 299
report . 300
run . 301
sdc_apply . 303
set_case_analysis . 304
verify . 305

Generating Log Files in Tcl Mode . 307
Reserved Variables . 307

Appendix A
Managing VHDL Libraries and Files . 313

Introduction . 313
Setting Libraries . 313

Setting Resource Libraries . 314
Building Libraries . 314
Adding Files to VHDL Resource Projects . 315
Adding Libraries to VHDL Resource Projects . 315
Creating Local VHDL Resource Libraries . 316

Appendix B
Leda Environment Variables . 317

Introduction . 317
Setting Leda Environment Variables . 317

Using Leda Environment Variables . 318

12 Synopsys, Inc. June 2006

Contents Leda User Guide

Appendix C
Leda Prebuilt Configurations . 321

Overview . 321
RTL Prebuilt Configuration . 322
Gate-level Prebuilt Configuration . 325
Leda-classic Prebuilt Configuration . 327
CDC Prebuilt Configuration . 387
SDC-postlayout Prebuilt Configuration . 388
SDC-prelayout Prebuilt Configuration . 390
SDC-RTL Prebuilt Configuration . 393
SDC-top-versus-block Prebuilt Configuration . 396
SDC-equivalency Prebuilt Configuration . 397

Appendix D
Leda Duplicated Rules . 399

Introduction . 399
Disabling Redundant Rules . 399
Duplicated Rule List . 400

Appendix E
Errors and Warnings Message List . 433

Introduction . 433
Verilog Compilation Warnings . 433
Verilog Compilation Failures . 437
Deselectable Messages . 440
Elaboration Failure Messages . 442
Elaboration Error Messages . 442
Elaboration Warning Messages . 444
Elaboration Note Messages . 446

Index . 447

June 2006 Synopsys, Inc. 13

Leda User Guide Figures

Figures

Figure 1: Leda Rule Specifier and Checker Overview . 24
Figure 2: Approaches to Using Leda . 29
Figure 3: Leda Modes of Operation . 30
Figure 4: Signal CLK is a primary clock . 43
Figure 5: Signal CLK is a primary clock . 43
Figure 6: Signal CLK is also a primary clock . 44
Figure 7: Signal D1 is a generated clock from primary clock CLK 44
Figure 8: INT1 is a generated clock as no connection to a primary port 45
Figure 9: INT1 is a generated clock due to disconnection . 45
Figure 10: Gated clock . 46
Figure 11: Gated clock . 47
Figure 12: Checker Control Panel . 75
Figure 13: Locked Rule Wizard Warning . 76
Figure 14: Rule Wizard Window . 77
Figure 15: Invoking the Policy Manager . 81
Figure 16: Leda Checker Main Window . 90
Figure 17: Project Creation Wizard Window . 91
Figure 18: Leda Checker Results . 95
Figure 19: Constant Propagation for Test Mode . 96
Figure 20: Rule Wizard Window . 98
Figure 21: Deactivating Rules from Error Viewer . 105
Figure 22: Deselect Rules by File in Rule Wizard . 106
Figure 23: Checker Options in Application Preferences . 108
Figure 24: Specify Design Information Window (Top Units Tab) 109
Figure 25: Test Clock/Reset Tab . 110
Figure 26: Checkers Tab . 111
Figure 27: Checker After Check . 112
Figure 28: Log, History, Error/Warnings Tab . 114
Figure 29: Error Viewer Preferences Window . 116
Figure 30: Error Viewer Summary . 116
Figure 31: Severity, Message, and Label in Rule Display . 117
Figure 32: File Level in Rule Display . 118
Figure 33: HDL Fragments in Rule Display . 118
Figure 34: Error Level File Display . 119
Figure 35: HDL Fragments in File Display . 119
Figure 36: Leda Design Report . 120

14 Synopsys, Inc. June 2006

Figures Leda User Guide

Figure 37: Invoking the Path Viewer . 121
Figure 38: Path Viewer Window . 121
Figure 39: Hierarchy Browser Window . 122
Figure 40: Hierarchy Types in Path Viewer . 122
Figure 41: Traceable Objects in Path Viewer . 123
Figure 42: Extended/Standalone Path Viewer Window . 124
Figure 43: Clock View in Clock and Reset Tree Browser . 126
Figure 44: Project Update Wizard . 130
Figure 45: Tcl File with SDC Checker Commands . 141
Figure 46: Leda Checker Main Window . 170
Figure 47: Leda Info Report Tab Display . 171
Figure 48: Set Text Editor Window . 172
Figure 49: Source File Manager Window . 181
Figure 50: Library Unit Manager Window . 184

June 2006 Synopsys, Inc. 15

Leda User Guide Figures

16 Synopsys, Inc. June 2006

Tables Leda User Guide

Tables

Table 1: Documentation Conventions . 21
Table 2: Key Terminology in Leda . 26
Table 3: Types of Leda Rules . 27
Table 4: VHDL Design Entity Instantiations in Verilog Modules 59
Table 5: Mapping VHDL Ports to Verilog Ports . 60
Table 6: Mapping Verilog Ports to VHDL Ports . 61
Table 7: Mapping VHDL bit Types to Verilog States . 61
Table 8: Mapping VHDL std_logic Types to Verilog States 61
Table 9: Mapping Verilog States to VHDL std_logic and bit Types 62
Table 10: Mapping VHDL Identifiers to Verilog Identifiers . 64
Table 11: Environment Variables in Clock Grouping Feature 66
Table 12: Rule Severity in Rule Wizard . 78
Table 13: Choosing a Method for Creating New Rules . 79
Table 14: Command-Line Checker Error Report Options . 129
Table 15: Supported SDC Design Constraint Commands . 137
Table 16: Supported SDC Design Object Commands . 139
Table 17: Common Command-Line Options and Switches 148
Table 18: VHDL Command-Line Options and Switches . 157
Table 19: Verilog Command-line Options and Switches . 159
Table 20: Checker Return Status . 166
Table 21: File Menu Choices . 173
Table 22: Project Menu Choices . 175
Table 23: Check Menu Choices . 176
Table 24: Report Menu Choices . 177
Table 25: Help Menu Choices . 178
Table 26: Source File Levels in Display . 181
Table 27: Project Pop-up Menu Choices . 182
Table 28: Library Pop-up Menu Choices . 182
Table 29: Source File Pop-up Menu . 183
Table 30: Unit Pop-up Menu . 183
Table 31: Library Unit Levels in Display . 184
Table 32: Project Pop-up Menu Choices . 185
Table 33: Library Pop-up Menu Choices . 186
Table 34: Attributes of Objects supported by Collection . 190
Table 35: . 192
Table 36: Leda Environment Variables . 318

June 2006 Synopsys, Inc. 17

Leda User Guide Tables

Table 37: RTL Prebuilt Configuration . 322
Table 38: Gate-level Prebuilt Configuration . 325
Table 39: Leda-classic Prebuilt Configuration . 327
Table 40: CDC Prebuilt Configuration . 387
Table 41: SDC-postlayout Prebuilt Configuration . 388
Table 42: SDC-prelayout Prebuilt Configuration . 390
Table 43: SDC-RTL Prebuilt Configuration . 393
Table 44: SDC-top-versus-block Prebuilt Configuration . 396
Table 45: SDC-equivalency Prebuilt Configuration . 397
Table 46: Duplicated Rule List . 400

18 Synopsys, Inc. June 2006

Tables Leda User Guide

June 2006 Synopsys, Inc. 19

Leda User Guide Preface

Preface

About This Manual
This manual is designed for engineers who want to write rules using the Leda Specifier
tool or check HDL source files against different sets of rules using the Leda Checker
tool. If you want to write new coding rules, and are unfamiliar with VeRSL and VRSL,
you should read and work the examples in the Leda Rule Specifier Tutorial before using
this book. Similarly, if you want to write design rules that run against your elaborated
design database, see the Leda Tcl Interface Guide or Leda C Interface Guide. This
manual is intended for use by design and quality assurance engineers who are already
familiar with Tcl and VHDL or Verilog.

Related Documents
This manual is part of the Leda documentation set. To see a complete listing, refer to the
Leda Document Navigator.

Manual Overview
This manual contains the following chapters and appendixes:

Preface Describes the manual and lists the typographical
conventions and symbols used. Explains how to get
technical assistance.

Chapter 1
Leda Overview

An overview of Leda, including a diagram of how the
tool works, explanations about the different types of
Leda rules, definitions of key terms, different modes of
operation (GUI, batch, and Tcl shell), and the
recommended approaches for using Leda to complete
different verification tasks.

20 Synopsys, Inc. June 2006

Preface Leda User Guide

Chapter 2
Writing and Checking HDL
Designs

Shows recommended organizations for VHDL, Verilog,
and mixed-language projects. Explains syntax to use
when instantiating across languages, and the data type
mappings for VHDL and Verilog.

Chapter 3
Modifying and Creating Rules

Explains how to configure prepackaged rules,
copy-and-modify prepackaged rules, and write new rules
from scratch using the Specifier tool.

Chapter 4
Checking Designs For Errors

Explains how to organize HDL source files into projects,
check these HDL files against rules that you select, and
fix any errors that are found.

Chapter 5
Using the SDC Checker

Explains how to use the Synopsys Design
Constraint (SDC) checker tool to check SDC files
for consistency and correctness, both internally and
with respect to the design.

Chapter 6
Using Leda Batch Mode

Explains how to use the Leda Checker tool in batch
mode from the command line. Includes complete syntax
for all command-line options and switches, as well as
Verilog-only and VHDL-only options and switches.

Chapter 7
Using Leda GUI Mode

Provides information on how to use the Leda GUI,
including descriptions of all the menus available from
the Specifier and Checker main windows.

Chapter 8
Using Leda Tcl Shell Mode

Provides reference and syntax information for the
custom Tcl procedures available in Leda for managing
rules, projects, and Checker runs.

Appendix A
Managing VHDL Libraries and
Files

Provides detailed information on how to set up and
manage VHDL resource libraries and files.“Setting
Libraries” on page 313

Appendix B
Leda Environment Variables

Lists all of the Leda environment variables and their
uses.

Appendix C
Leda Prebuilt Configurations

Lists of all the rules contained in the major prebuilt
configurations.

Appendix D
Leda Duplicated Rules

Lists of all the redundant rules.

Appendix E
Errors and Warnings Message
List

Lists of all the errors, warnings, fatal, and note
messages.

June 2006 Synopsys, Inc. 21

Leda User Guide Preface

Typographical and Symbol Conventions
Table 1 describes the typographical conventions used in this manual.

Table 1: Documentation Conventions

Convention Description and Example

% Represents the UNIX prompt.

Bold User input (text entered by the user).
% cd $LMC_HOME/hdl

Monospace System-generated text (prompts, messages, files, reports).
No Mismatches: 66 Vectors processed: 66 Possible"

Italic or Italic Variables for which you supply a specific value. As a command
line example:
% setenv LMC_HOME prod_dir

In body text:
In the previous example, prod_dir is the directory where your
product must be installed.

| (Vertical rule) Choice among alternatives, as in the following syntax example:
-effort_level low | medium | high

[] (Square brackets) Enclose optional parameters:
pin1 [pin2 ... pinN]

In this example, you must enter at least one pin name (pin1), but
others are optional ([pin2 … pinN]).

TopMenu > SubMenu Pull-down menu paths, such as:
File > Save As …

22 Synopsys, Inc. June 2006

Preface Leda User Guide

Getting Leda Help
For help with Leda, send a detailed explanation of the problem, including contact
information, to leda-support@synopsys.com.

The Synopsys Web Site
General information about Synopsys and its products is available at this URL:

http://www.synopsys.com

http://www.synopsys.com
mailto:leda-support@synopsys.com

June 2006 Synopsys, Inc. 23

Leda User Guide Chapter 1: Leda Overview

1
Leda Overview

Introduction
This chapter provides an overview of Leda, in the following major sections:

• “What is Leda?” on page 23

• “How Leda Works” on page 25

• “Leda Terminology” on page 26

• “Types of Leda Rules” on page 27

• “Approaches to Using Leda” on page 29

• “Using Leda in Batch, GUI, and Tcl Shell Modes” on page 30

• “About Design Rules” on page 39

• “Using .db Files for Checks” on page 39

• “About Hardware-Based Rules” on page 42

• “Rules Leda Cannot Check” on page 50

What is Leda?
Leda is a system-to-netlist Checker tool that comes with prepackaged rules to check
your Verilog or VHDL designs against various coding standards and design rules.

Leda contains an optional Specifier tool that you can use to define your own coding
rules using the supplied VeRSL and VRSL macro-based rule programming languages
for Verilog and VHDL. Leda also features complete APIs that you can use to develop
netlist rules in Tcl or C to run against the elaborated design database.

24 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

After you elaborate your design in the Leda environment, you can use the built-in Tcl
shell and a set of predefined procedures to run interactive queries on your design. With
full support for Verilog 2001 and System Verilog 3.0 (except assertions), combined with
extensive RTL and netlist checks, Leda can check your designs from top to bottom for
errors that may cause problems in the downstream simulation, synthesis, and
equivalence checking flows. For example, Leda can check for synthesizability,
simulatability, portability, and optimal performance.

The best way to learn Leda is to test one of your designs with the Checker and the
prepackaged policies (sets of rules). The prepackaged rules are designed to meet most
hardware design needs. You can also use the Specifier or the Tcl/C APIs to create your
own custom rules or configure prepackaged rules to meet your own design team’s needs,
as shown in Figure 1.

Figure 1: Leda Rule Specifier and Checker Overview

SDC

SpecifierPrepackaged Custom Rules
You Create

Clean

Compiled
Rules

Leda

Check & Fix
CheckerCheckerChecker

VRSL/VeRSL
Code

Verilog/VHDL
Code

(Optional)

 Rules

C API Tcl API
Design/Netlist Checks (DQL)

Coding, Language, & Netlist Checks (System > Netlist)

VRSL/VeRSL
Code

Clk/Reset Tree Browser

Interactive Error Viewer

Source Code
Browser/Editor

clk

QD

moldule (clk ...)
always_ff @

begin...
endmodule

Note
Warning
Error
Fatal

& Path Viewer

SDC File Checks (CQL)

Verilog

VHDL

June 2006 Synopsys, Inc. 25

Leda User Guide Chapter 1: Leda Overview

How Leda Works
For block-level or coding rules, if there isn’t a prepackaged rule available that meets
your needs, you use the Specifier to define templates and rules that jointly describe
exactly what your input VHDL or Verilog code should look like. Templates are models
of how the code should appear (for example, what HDL constructs should or should not
be present, in what order, and so forth).

You select templates and attributes from predefined sets, and program constraints using
VRSL/VeRSL commands (see “Approaches to Using Leda” on page 29). You then use
the Specifier to compile the rule source code into object files. Note that you need a
Specifier license to build and compile your own rules.

For design or netlist rules, if there isn’t a prepackaged rule available that meets your
needs, you use the Tcl or C APIs to develop rules that run against the elaborated design
database. You then integrate your compiled rules (C) or TCL scripts (.tcl) into the Leda
environment using VeRSL wrappers. Once integrated this way, you use the rules just
like other prepackaged or user-defined rules. For more information, see the Leda Tcl
Interface Guide or Leda C Interface Guide.

You can run checks from the GUI, in batch mode from the command line, or using the
Tcl shell (see “Using Leda in Batch, GUI, and Tcl Shell Modes” on page 30). You use
the Checker, which is built into the Specifier (or purchased standalone), to designate
Verilog or VHDL input files that you want to compare against coding rules that you
select with the click of a mouse. The Leda Checker analyzes your Verilog and VHDL
source code, and produces error messages indicating which lines in the code violate the
rules. You can then:

• Visualize signal paths and trace errors using the integrated or standalone Path
Viewer.

• Trace clock and reset origins/paths using the integrated Clock/Reset Tree Browser.

• Obtain help about violated rules in HTML format, including, in some cases, circuit
diagrams and HDL code examples that explain the problems.

• Hyperlink directly from the Error Viewer to the suspect code in your HDL files,
correct the errors (highlighted in the source files), and rebuild your design.

• Run design queries on your elaborated design database from the integrated Tcl shell,
using a predefined set of Tcl procedures (API).

Leda provides an integrated debugging environment. Changes you make in one mode
(GUI, batch, Tcl shell) are automatically reflected in all modes for that session. And the
different views available in the GUI (Path Viewer, Clock/Reset Tree Browser, source
code hierarchy, modules/units, Error Viewer) are synchronized to make it easier for you
to figure out what’s wrong and fix it.

26 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

Leda Terminology
There are several terms that have specific meaning in the context of using Leda. It is a
good idea to familiarize yourself with this terminology before using Leda. Table 2 lists
the key Leda terms and their definitions.

Table 2: Key Terminology in Leda

Term Definition

Rule An expression written in VRSL (for VHDL) or VeRSL (for Verilog) that
precisely describes and constrains an HDL construct. Rules can either be
in source code form, which is ASCII text, or compiled, after you build
them using the Specifier. There are two basic kinds of rules: coding rules
and design rules. You write coding rules in VeRSL/VRSL and design
rules in Tcl or C.

Ruleset A collection of one or more rules. You write rule source code in rulesets,
which are stored in ruleset.rl (for VRSL) or ruleset.sl (for VeRSL) files.
You write rulesets as plain text files that follow prescribed VRSL or
VeRSL coding conventions. Leda prepackaged rules are organized into
the major subdivisions of various coding standards. For example, in the
RMM policy based on the Reuse Methodology Manual, there are rulesets
for coding for portability and guidelines for clocks and resets.
Note: Rulesets are used both for coding rules that you develop in VRSL
or VeRSL and design rules that you develop in Tcl or C using the supplied
APIs.

Policy A policy can contain any number of rulesets. Leda uses policies to
organize major coding standards such as the RMM coding guidelines or
the IEEE synthesis subsets. To see how policies are used to organize the
Leda prepackaged rules, cd to the $LEDA_PATH/rules directory and
review the policy source files (for example, rmm or ieee_synthesis) or
review the Leda Prepackaged Rules Guides, which provide detailed
reference information for all of the Leda prepackaged rules. There is a
separate PDF file for each policy in the $LEDA_PATH/doc directory.

Template A predefined model of an HDL coding construct. Leda scans your HDL
code to find segments that match templates used in the rules that you
select. Each template in the VRSL and VeRSL rule specification
languages is either primary or secondary. They are all clearly labelled in
the VRSL Reference Guide and VeRSL Reference Guide, which provide
complete reference information for all templates and attributes.

Attribute Aspects or characteristics of templates that you use to define exactly the
kind of HDL code a template will match. Each template has a defined set
of attributes that you can use with it. You can use some attributes as
templates, with their own sets of attributes. VRSL and VeRSL are flexible
in this way. Templates and attributes are the building blocks that you use
to write rules.

June 2006 Synopsys, Inc. 27

Leda User Guide Chapter 1: Leda Overview

Types of Leda Rules
There are four general types of Leda rules, as shown in Table 3.

VRSL VHDL rule specification language. VRSL is a macro-based language
which you use to write rules that check VHDL source code for deviations
from prescribed standards. Note that VRSL is not an HDL.

VeRSL Verilog rule specification language. VeRSL is a macro-based language
which you use to write rules that check Verilog source code for deviations
from prescribed standards. Note that VeRSL is not an HDL.

Table 3: Types of Leda Rules

Rule Type Description

Block-level rules
(aka Coding rules)

Block-level rules constrain different HDL constructs by ensuring
that they correspond to acceptable values, ranges, or templates.
This means that you can define a syntactic/semantic subset of the
language that is uniquely targeted to your design flow and
methodology. For example, you can use Leda to check for HDL
constructs such as architecture, body, module instantiation, and
variable assignments.

Chip-level rules
(aka Hardware rules)

Chip-level rules control the hardware semantics of VHDL and
Verilog. Certain HDL constructs result in specific hardware
features when you synthesize the descriptions. For example:

• VHDL—ck='1' and ck'event represent clocks active on the rising
edge

• Verilog—@posedge clk represents a clock active on the rising
edge

You can check for the proper use of clocks, and inferred hardware
such as latches, flip-flops, and finite state machines. You can also
check for tristated signals, asynchronous feedback loops, and other
HDL design concerns.
Chip-level checkers are not programmable, but configurable to
some extent. It includes a set of rules that cannot be modified by
the user. It is fast, efficient but not as open as the netlist checker.

Table 2: Key Terminology in Leda (Continued)

Term Definition

28 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

Design rules
(aka Netlist rules)

Design rules work on the entire design hierarchy. For design rules
to work, you must specify a -top module in the design hierarchy.
Netlist checkers are less efficient than the chip-level checker, but it
is completely open (i.e. customers can program their own check in
Tcl or in C). It includes much more checks than chip-level
checkers.
In some cases, netlist rules provide a better flexibility than old
chip-level rules, for instance when checking for clock domain
crossing (NTL_CLK05/C_1202), only NTL_CLK05 can be
configured not to fire on synchronous clocks, with C_1202, there is
no way to inform Leda that some clocks are synchronous hence the
rule shall not fire.
For more information, see the “Checkers Tab” on page 111

SDC rules Synopsys Design Constraint (SDC) rules check SDC files for
internal consistency and consistency with the design.

Table 3: Types of Leda Rules

Rule Type Description

June 2006 Synopsys, Inc. 29

Leda User Guide Chapter 1: Leda Overview

Approaches to Using Leda
There are several ways to use Leda, depending on your needs. Figure 2 provides an
overview of the recommended approaches for using Leda’s coding rules. You can also
develop design rules that run against the elaborated design database using the supplied
Tcl and C APIs. For more information, see the Leda Tcl Interface Guide or Leda C
Interface Guide. In the following diagram, the referenced sections in this manual
explain how to proceed.

Figure 2: Approaches to Using Leda

Can you configure the
prepackaged rules to
meet all your needs?

Is there a prepackaged
rule in the Leda Rules
Guides that is close, but
not quite what you need?

Are none of the
prepackaged rules in the
Leda Rules Guides
similar to what you
need?

Proceed to:
“Configuring the Rule
Wizard” on page 73.

Proceed to:“Copying
and Modifying
Prepackaged Coding
Rules” on page 80.

Proceed to:“Writing
New Rules from
Scratch” on page 80.

Easier Harder

Yes

Yes

Yes

No

No

30 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

Using Leda in Batch, GUI, and Tcl Shell
Modes

You can use Leda in batch, GUI, and Tcl shell modes, and switch back and forth
between any of these modes in the same session depending on the task at hand. Changes
you make in one mode with Leda are automatically reflected in all other modes. Leda’s
different modes all work together to help you debug and fix HDL coding and chip-level
design issues (see Figure 3).

Batch mode is best for experienced users because you can run scripts that reuse
established command-line options. GUI mode is a good option for new users because of
the more intuitive interface. After you run a check on your design files in either mode,
you can use the GUI to review and debug errors. When you are in GUI mode, you also
have access to the Tcl shell using the console at the bottom of the main window. You can
use the Tcl shell to interactively check design rules against your elaborated design
database using a Design Query Language (DQL). Leda provides an API with a set of Tcl
procedures that you can use to call the DQL (for example, get_all_clock_origins). For
more information, see the Leda Tcl Interface Guide. You can also use the Tcl shell to
manage your Leda projects, rule configurations, and runs with the Checker (see “Using
Leda Tcl Shell Mode” on page 187).

Figure 3: Leda Modes of Operation

% $LEDA_PATH/bin/leda list-of-options

leda> get_all_clock_origins

Batch Mode

Tcl Shell Mode

GUI Mode

Debug errors
View/edit HDL
source files
Trace clocks/
resets

Manage projects
Configure rules
Run Checker

Interactive design
queries
Netlist checks

Reuse command
lines with scripts
Regression tests

June 2006 Synopsys, Inc. 31

Leda User Guide Chapter 1: Leda Overview

Invoking Leda
To invoke Leda in batch mode:
% leda batch_command_line_args/options [-project project_name]

To invoke Leda in GUI mode, type leda with no arguments:
% leda

To invoke Leda in Tcl shell mode:
% leda +tcl_shell [-project project_name]

% leda +tcl_shell batch_command_line_args/options [-project project_name]

If you don’t specify a project_name or any batch command-line arguments or options,
Leda does not create or open a project for you. However, in GUI or Tcl shell mode,
when you don’t specify a project_name, but include batch command-line arguments or
options, Leda assumes an implicit project named “leda”. Thus, the following two
commands are equivalent:

% leda +tcl_shell batch_command_line_args/options

% leda +tcl_shell batch_command_line_args/options -project leda

GUI mode includes Tcl shell mode using the leda> prompt at the bottom of the main
window. There is no difference between commands executed in Tcl shell mode and GUI
mode, except that GUI-specific commands (that is, all commands starting with the
prefix “gui_” except gui_start) are invalid outside GUI mode.

Switching Modes
To go from Tcl shell mode to GUI mode, at the Tcl shell prompt, type:

leda> gui_start

To go from GUI mode to Tcl shell mode, in the Tcl shell console at the bottom of the
main window, type:

leda> gui_stop

A GUI command line is always equivalent to a Tcl shell command line with the same
arguments and options, immediately followed by the execution of the gui_start
command at the Tcl shell prompt. For example:
% leda +gui [-project project_name]

is equivalent to
% leda +tcl_shell [-project project_name]

leda> gui_start

32 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

and
% leda +gui batch_command_line_args/options [-project project_name]

is equivalent to
% leda +tcl_shell batch_command_line_args/options [-project project_name]

leda> gui_start

Creating Projects
You can create a project in any mode and reuse that project in any other mode. To create
a new project:

• In GUI mode, choose Project > New from the pulldown menu, This launches the
Project Creation Wizard. Follow the steps indicated. For more information, see
“Creating Projects to Check HDL Code” on page 91.

• In Tcl shell mode, execute the project_new command followed by other project
specification commands (with prefix “project_”).

leda> project_new project_name

• In batch mode, use the -project option and specify a new project name:
% leda batch_command_line_args/options -project new_project_name

Opening Projects
To open a project:

• In GUI mode, choose Project > Open.

• In Tcl Shell mode, execute the project_open command followed by the project
name:

leda> project_open project_name

• In batch mode, use the -project option and specify an existing project name
% leda [+gui | +tcl_shell] -project project_name

Enabling Design Query Commands
The Tcl interpreter, embedded in the GUI and the Tcl Shell, supports a set of commands
that you can use to query the elaborated design database. For this to work, you first have
to elaborate the design. You can do this several ways:

• In batch mode, specify a -top unit:
% leda hdl_file_list -top my_top_unit +tcl_shell

June 2006 Synopsys, Inc. 33

Leda User Guide Chapter 1: Leda Overview

• In GUI mode, choose File > Preferences and select the “Netlist Checks” check box
in the Checker category. Then execute the Checker with some netlist checking rules
selected (for example, prepackaged rules from the NETLIST policy).

• In Tcl mode, use the elaborate command after you invoke the Tcl shell and open an
existing project:

% leda +tcl_shell

leda> project_open existing_project_name

leda> elaborate

• In Tcl mode, you can also read in some HDL source files, specify the top-level unit,
and link/elaborate the design as follows without specifying a project:

% leda +tcl_shell (to start the tool)

leda> read_verilog netlist.v (or a set of files)

leda> current_design name_of_top_level_unit

leda> elaborate (resolve all instantiations and elaborate the design)

With your elaborated design in memory, you now can:

• Execute interactive queries using the Design Query Language (DQL) functions. For
complete reference information on the Tcl DQL API, see the Leda Tcl Interface
Guide.

• Execute built-in Tcl commands (see “Built-in Tcl Commands” on page 189), or load
a Tcl script that contains a series of built-in Tcl commands.

Configuring the GUI
There are additional Tcl commands that you can use to manage/configure the GUI. They
all start with the “gui_” prefix. For details, see the help in the Tcl shell:

leda> help

From the list of commands returned, pick the one you are interested in and then get the
help on that command. For example:

leda> gui_toggle_summary -help

All other commands supported by the Tcl interpreter are accessible any time the Tcl
shell is running.

34 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

Typical Leda Usage Scenarios
You may want to switch back and forth between batch, GUI, and Tcl shell mode
depending on the task at hand. To better illustrate some typical usage scenarios,
following are some case studies that show effective ways to use Leda in all three modes.
The HDL files in these case studies are referenced as $DES2001. Let’s say that this
directory contains three subdirectories: two including Verilog files (DW_usbd.v and
misc.v) and one including VHDL files (dw_8051.vhd).

Case Study 1
This case study shows how to check a design in batch mode, debug errors in GUI mode,
and execute design queries from the Tcl shell within the GUI:

% leda $DES2001/*/*.v -top DW_usbd_chip -project dw_usb

% leda -project dw_usb

or equivalent
% leda +gui -project dw_usb

The first line in this example executes the Checker in batch mode and creates a project
that includes the HDL files that you want to check.

The second line invokes the GUI with the project created in the first line. From the Tcl
prompt at the bottom of the GUI window, execute the elaborate command to enable the
DQL, and then use the get_all_clock_origins query as follows:

leda> elaborate

leda> get_all_clock_origins

In this particular design, the get_all_clock_origins command returns two primary clocks
(clkref and clk_48). After this command runs, you can see the clock signals displayed in
the clock tree browser on the left side of the GUI main window.

Note that in this example, you must first execute the elaborate command before
browsing the design, because it is not loaded in memory when the GUI opens. This is
because the design elaboration/checking and the GUI opening were executed by two
separate command lines or processes. Case Study 2 uses a single command line (one
process), so it does not require an elaboration in a second step.

Case Study 2
Check a design in batch mode, debug errors in GUI mode, and execute design queries
from the Tcl Shell within the GUI, but with one initial command line:

% leda $DES2001/*/*.v -top DW_usbd_chip -project dw_usb +gui

June 2006 Synopsys, Inc. 35

Leda User Guide Chapter 1: Leda Overview

In this example, the Checker executes in batch mode and creates the project before
automatically opening the GUI. From the Tcl prompt at the bottom of the GUI window,
you can now execute the get_all_clock_origins query as follows:

leda> get_all_clock_origins

As before, with this particular design, the get_all_clock_origins command returns two
primary clocks (clkref and clk_48).

Case Study 3
Check a design in batch mode, and execute design queries in Tcl shell mode without
using the GUI:

% leda $DES2001/*/*.v -top DW_usbd_chip -project dw_usb

% leda -project dw_usb +tcl_shell

The first line in this example executes the Checker in batch mode and creates a project
for the HDL files.

The second line invokes Tcl shell mode with the project created in the first line. At the
Tcl prompt, execute the elaborate command and then the get_all_clock_origins query as
follows:

leda> elaborate

leda> get_all_clock_origins

As before, with this particular design, the get_all_clock_origins command returns two
primary clocks (clkref and clk_48).

Note that, as in Case Study 1, you must first execute the elaborate command before
browsing the design, because it is not loaded in memory when the Tcl shell opens. Case
Study 4 uses a single command line (one process), so it does not require an elaboration
in a second step.

Case Study 4
Check a design in batch mode and invoke the Tcl shell in one command line. Execute
design queries from the Tcl shell. Then invoke the GUI, observe the project, execute the
same design queries, and go back to Tcl shell mode.

% leda $DES2001/*/*.v -top DW_usbd_chip -project dw_usb +tcl_shell

This line executes the Checker in batch mode, creates a project on the fly, and opens Tcl
shell mode. Now, at the Tcl prompt in the Tcl shell mode, execute the DQL command
get_all_clock_origins:

leda> get_all_clock_origins

36 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

As before, with this particular design, the get_all_clock_origins command returns two
primary clocks (clkref and clk_48).

Now, invoke the GUI using the gui_start command:
leda> gui_start

The GUI automatically opens the project “dw_usb”. Check the project name in the
upper-left of the main window just below the toolbar. Notice that the clock tree browser
reports the two same primary clocks. Then use the Tcl prompt at the bottom of the main
window to execute the same DQL command: get_all_clock_origins. As before, with this
particular design, the get_all_clock_origins command returns two primary clocks
(clkref and clk_48).

Then exit the GUI using the gui_stop command:
leda> gui_stop

You can type this command either at the Tcl prompt in the GUI or at the leda> prompt in
the shell where you invoked Leda.

When the GUI exits, you are back in Tcl shell mode. Execute the same
get_all_clock_origins DQL command gain. The command still returns the same two
primary clocks (clkref and clk_48) for this design, proving that the design is still in
memory.

Case Study 5
This example is the same as Case Study 4, except that no project name is given:

% leda $DES2001/*/*.v -top DW_usbd_chip +tcl_shell

After invoking Leda this way, if you follow the same steps as in Case Study 4 you get
the same results, except that the project name opened by the GUI is “leda”. Leda creates
an implicit “leda” project automatically when you don’t specify a project using the
-project option.

Case Study 6
Check a design in batch mode, debug the errors in GUI mode, and execute design
queries from the Tcl Shell within the GUI. Then exit the GUI to Tcl shell mode and
execute the same design queries again from the Tcl shell.

% leda $DES2001/*/*.v -top DW_usbd_chip -project dw_usb

% leda +gui -project dw_usb

June 2006 Synopsys, Inc. 37

Leda User Guide Chapter 1: Leda Overview

In this example, the first line executes the Checker in batch mode and creates a project
named dw_usb. The second line opens the GUI with the project created in the first line.
From the Tcl prompt at the bottom of the main window, execute the elaborate command
to enable the DQL database and then run the get_all_clock_origins query:

leda> elaborate

leda> get_all_clock_origins

As before, with this particular design, the get_all_clock_origins command returns two
primary clocks (clkref and clk_48). As in Case Study 1, you must first execute the
elaborate command before browsing the design because it is not loaded in memory
when the GUI opens.

Now exit the GUI and switch to Tcl shell mode using the gui_stop command:
leda> gui_stop

The GUI quits, and you are returned to Tcl shell mode in the shell where you invoked
Leda. At the leda> prompt, execute the get_all_clock_origins DQL command again.
The command returns the same two primary clocks (clkref and clk_48) for this
particular design, proving that the design, which was elaborated from within the GUI, is
still in memory when you switch to Tcl Shell mode.

Case Study 7
Invoke Leda in Tcl shell mode, open a project, and then launch the GUI.

% leda +tcl_shell

This enters Tcl shell mode. Check that no project or no design is loaded by trying to
execute the get_all_clock_origins DQL command:

leda> get_all_clock_origins

This time, the query returns an error message saying that this “command is unknown”.
Now open the project created in the Case Study 6, elaborate the design, and try to get the
clock origins:

leda> project_open dw_usb

leda> elaborate

leda> get_all_clock_origins

Now that you have elaborated the design, the get_all_clock_origins command returns
the two primary clocks (clkref and clk_48) for this particular design.

Open the GUI using the qui_start command:
leda> gui_start

38 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

Again, the GUI automatically opens the dw_usb project. From the Tcl prompt at the
bottom of the main window, execute the get_all_clock_origins DQL command again.
The command returns the two primary clocks (clkref and clk_48). Check that the clock
tree browser displays the same information.

Case Study 8
Open Leda in GUI mode and open a project at the Tcl prompt from within the GUI.

% leda

or equivalent
% leda +gui

Both of these line invoke Leda in GUI mode. Check that no project or no design is
loaded by trying to execute the get_all_clock_origins DQL command from the Tcl
prompt at the bottom of the main window:

leda> get_all_clock_origins

This command returns an error message saying that this “command is unknown”. Now
open the project created in Case Study 6, again from the Tcl prompt at the bottom of the
main window:

leda> project_open dw_usb

The GUI opens the project. Now, elaborate the design and try the get_all_clock_origins
query again:

leda> elaborate

leda> get_all_clock_origins

The command returns the two primary clocks (clkref and clk_48) for this particular
design.

Case Study 9
Check a design using Tcl commands and no project:

% leda +tcl_shell

This enters Tcl shell mode. Check that no project or no design is loaded by trying to
execute the DQL command get_all_clock_origins:

leda> get_all_clock_origins

This should return an error message saying that this command is unknown. Now read
files to check and elaborate the design with the following commands:

leda> read_verilog $DAC2001/*/*.v
leda> elaborate -top DW_usbd_chip

June 2006 Synopsys, Inc. 39

Leda User Guide Chapter 1: Leda Overview

Now verify that the design is correctly loaded by executing the DQL command:
leda> get_all_clock_origins

This command returns the two primary clocks (clkref and clk_48) for this particular
design.

About Design Rules
Design rules are applied to the entire design hierarchy, whereas block-level rules are
applied to each unit individually. You can write design rules using the templates listed
below. Other templates, such as clock and synchronous_reset, also contain attributes
that you can use to write chip-level rules:

• Design Template

• Connectivity Template

• Test Signal Template

• Data Signal Template

• Flipflop Template

• Latch Template

For detailed reference information on all VeRSL and VRSL templates and attributes, see
the VeRSL Reference Guide (for Verilog) and VRSL Reference Guide (for VHDL).

Note
You can also write design netlist-checking rules using Leda’s Tcl or C rule
APIs. For more information, see the Leda Tcl Interface Guide or Leda C
Interface Guide.

Using .db Files for Checks
A .db file is a technology-dependent representation of a library used by several
Synopsys tools. In particular, .db files are used by Design Compiler and Path Mill. A .db
file is generated by Library Compiler from a .lib file that contains the source
representation of the information. Many gate-level or netlist representations include .db
files. Leda reads .db files in order to correctly check chip-level rules in designs that
include .db files. Leda reports any errors found at the file instantiation level.

Leda uses .db files similarly to the way Design Compiler uses them. (Note that Path Mill
uses a different environment variable.)

40 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

If you are using a .db file and want Leda to read this file for checking chip-level rules,
set the link_library environment variable to the location of your .db file, as shown in the
following example:

% setenv link_library gtech.db

Set the search_path environment variable to the location of your db libraries, as shown
in the following example:

% setenv search_path /synopsys/2001.08-Synthesis/libraries/syn

You can specify multiple link_libraries and search_paths by separating the names with
spaces and enclosing the list of entries in quotation marks. For example:

% setenv link_library “gtech.db class.db”

Note
The search_path variable is only useful for pointing to link libraries, not
design files.

The link_library and search_path variables are the same variables used with Design
Compiler. When these variables are set, Leda tries to resolve the instances with an
algorithm that depends on whether the source code is in VHDL or Verilog. If Leda
cannot find an architecture/module, it searches the .db files specified with the
$link_library variable. If found, Leda generates hardware information for the
instantiated unit. If not found, Leda treats the instantiated unit as a black box. For more
information about using Leda with .db files, including the limitations, see “Using .db
Files for Checks” on page 39.

June 2006 Synopsys, Inc. 41

Leda User Guide Chapter 1: Leda Overview

Limitation with Gates in .db Files
For instantiated gates in .db files, Leda does not handle composite ports in .db cells or
designs. Leda recognizes the instantiation if the port name matches the specified formal
name, but does not recognize it as a bus. Leda does not perform type verification in such
cases. For example, Leda accepts the following VHDL architecture definition:

architecture a of top is
 component GATE is
 port (A : in bit;

B : in bit;
Z : out bit);

 end component;
 signal input1, input2 : bit;
 signal ouput : bit;
begin
 INST: GATE port map (A => input1, B => input2, Z => output);
end;

where the cell GATE has the following ports, Leda considers Port B to be a port of type
bit.

 A
 B[0]
 B[1]
 B[2]
 B[3]
 Z

42 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

About Hardware-Based Rules
Verilog and VHDL are often used in environments that add hardware-specific semantics
to the code. For example, wait statements, clocks, and asynchronous/synchronous
expressions must be carefully defined for synthesis tools. You can use Leda to write
rules using hardware-specific attributes to govern the most common hardware-specific
semantics of Verilog and VHDL just as easily as coding rules. The following sections
explain some of the hardware inference semantics that Leda uses to implement
hardware-based rules:

• “Finite State Machine Rules” on page 42

• “Set and Reset Detection in VHDL and Verilog” on page 49

Attention
Leda’s hardware-based rules are designed to work on synthesizable HDL
code. If you run the Checker on a project that includes non-synthesizable
HDL code (for example, a testbench), the results are unpredictable. To solve
this problem, you can mask your testbench code using use the Synopsys
synthesis_off and synthesis_on or translate_on and translate_off directives
or pragmas. For information on setting these directives, see “Creating
Projects to Check HDL Code” on page 91 if you are using the GUI Checker
or Table 17 on page 148 if you are using the command-line Checker.

Finite State Machine Rules
Leda can infer finite state machines (FSMs) in Verilog or VHDL designs and apply rules
that you select to define the kind of FSM that is acceptable (for example, Moore or
Mealy). Leda can only identify FSMs that are coded using case statements to define the
states and transitions. Leda cannot identify FSMs coded using “if” statements.

Leda recognizes 1-process, 2-process, and 3-process FSM models if all the processes are
in the same block (architecture or module).

Leda comes with a set of prepackaged FSM rules in the State Machines ruleset, which is
part of the Leda General Coding Guidelines policy, For details, see the Leda General
Coding Rules Guide. There are also special “fsm” templates in VRSL and VeRSL that
you can use to develop custom rules for FSMs.

June 2006 Synopsys, Inc. 43

Leda User Guide Chapter 1: Leda Overview

Hardware Inference
This section explains how Leda identifies entities like primary clock, generated clock,
gated clock, clock origin, and clock domain.

Primary Clock
A primary clock is a primary input port used as a clock. Leda also considers inverters
and buffers on the clock path. Some examples of primary clocks are shown in Figure 4,
5 and 6.

Figure 4: Signal CLK is a primary clock

Figure 5: Signal CLK is a primary clock

44 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

Figure 6: Signal CLK is also a primary clock

Internally Generated Clock
An internally generated clock is a clock derived from a primary clock or an internal
signal driving the clock input of a flip-flop but not connected to a primary port.

In Figure 7, the internally generated clock has a synchronous relationship with its
primary (or master) clock.

Figure 7: Signal D1 is a generated clock from primary clock CLK

June 2006 Synopsys, Inc. 45

Leda User Guide Chapter 1: Leda Overview

In Figure 8, signal INT1 is a generated clock as there is no connection to any primary
port.

Figure 8: INT1 is a generated clock as no connection to a primary port

Figure 9 models a disconnected signal driving the clock input of a flip-flop. This implies
that for any disconnection in the clock connectivity, Leda infers a new clock.

Figure 9: INT1 is a generated clock due to disconnection

46 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

Gated Clock
A gated clock is a signal on a clock path that is the output of a combinatorial complex
block. A gated clock is modelled in both Figure 10 and 11. In Figure 10, the clock origin
is CLK and in Figure 11, the gated clock (output signal of the AND gate) is the clock
origin.

Figure 10: Gated clock

June 2006 Synopsys, Inc. 47

Leda User Guide Chapter 1: Leda Overview

Figure 11: Gated clock

Attention
Figure 11 infers an internally generated clock as there are no identified clock
origins (primary clock or internally generated clock) on the input cone to the
gate.

The general rule for inferring gated clock is as follows:

Note
A gated clock is considered as a clock origin, if and only if, there is zero or
more than one identified clock origins in its fan-in cone. Such gated clocks,
that is also a clock origin are considered as a kind of internally generated
clock. Other gated clocks having exactly one clock origin in its fan-in cone,
are neither considered as clock origins nor as internally generated clocks.

Clock Origin
Clock origins are the set of all clocks comprising the primary clocks and internally
generated clocks.

48 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

Note
If a clock or reset/set origin signal is tied to a constant value, then that signal
no longer act as a clock or reset/set regarding its register. So, the signal is not
stored in the control origin list.

Clock Domain
A clock domain is a set of flip-flops driven by the same clock origin or derivatives of
this clock origin. A derivative is an internally generated clock whose master is the
current clock origin or is a gated clock and one of the inputs to the gate is the current
clock origin. The master clock origin of a clock domain is the highest clock in the
hierarchy. All clocks in a clock domain are synchronous.

June 2006 Synopsys, Inc. 49

Leda User Guide Chapter 1: Leda Overview

Set and Reset Detection in VHDL and Verilog
Leda supports complex set and reset detection in both VHDL and Verilog designs. In
releases prior to 4.0, Verilog resets required the assigned value to be constant (or at least
globally static), whereas VHDL resets accepted dynamic values. Thus, in VHDL, loads
were treated as resets. Now, for VHDL and Verilog, a set or reset is required to assign a
globally static or constant value. This means that in VHDL some signals that Leda
previously identified as resets are no longer considered to be resets when the value is not
constant.

Leda detects both block-level constants and complex sets and resets. For example, Leda
detects set and reset signals in code like the following:

if RST then
S <= '0';

elsif CK'event and CK='1' then
S <= D

end if;

Leda also detects resets in code with a complex flow of control. In this case, reset
detection is enabled if Leda finds a reset embedded in a hierarchy of conditional if or
case statements. Leda also detects implicit resets in code like the following:

always @(posedge rd_clk)
 begin : READ_MEM_PROC
 dp_data_rda <= 0;
 if (~dp_csa_n) begin
 dp_data_rda <= memory[dp_addra];
 end
 end

In the above example, dp_data_rda has a reset expression, which is dp_csa_n
(~(~dp_csa_n)).

Block-Level Constant Detection in Verilog and VHDL
Leda determines that an object (signal, reg, or net) is tied to a static value (constant) if
either of the following are true:

• It is a supply

• It is assigned a constant value, no other assignment is performed on the object, and
the single assignment is not controlled by an expression (for example, if or case
statement).

Leda determines that an expression is static (constant) if either of the following are true:

• It is the primary expression denoting an object tied to a static value

• It is an expression that includes a globally static expression

50 Synopsys, Inc. June 2006

Chapter 1: Leda Overview Leda User Guide

Leda takes the detection of an object tied to a constant value into account in its reset
detection logic. For example, in the following example, the signal Reset is detected as a
reset:

Zero<='0';
 process(CK,Reset)
 begin
 if(Reset='0') then S<=Zero;
 else if Ck'event and Ck='1' then S<=D end if;
 end process;

Note
Leda does not detect static values in complex expressions.

Rules Leda Cannot Check
There are certain kinds of rules that Leda cannot specify or check. Before you get started
customizing prepackaged rules or creating new ones, consider the following limitations.
Leda does not support rules that:

• Check for things that you cannot define. For example, Leda cannot check to make
sure HDL comments are written in English or any other language.

• Check language-based, chip-level design issues. For example, Leda cannot check
that the same constant is used in different modules, and therefore should really be
declared externally.

Finally, Leda coding rules must use the templates and attributes that are part of the
VRSL and VeRSL rule specification languages (see Approaches to Using Leda). This
means that you cannot create a new template or attribute on your own. There is no such
restriction on design or SDC rules that you create using the supplied Tcl and C APIs. For
more information, see the Leda Tcl Interface Guide or Leda C Interface Guide.

June 2006 Synopsys, Inc. 51

Leda User Guide Chapter 2: Writing and Checking HDL Designs

2
Writing and Checking HDL Designs

Introduction
This chapter explains how to write and check designs that contain VHDL, Verilog, or a
combination of VHDL and Verilog code. The way the Leda Checker operates on these
three types of designs depends on how closely you follow the VHDL and Verilog
Language Reference Manuals (LRMs) in your code. Depending on how you set up the
Checker, you can get compiler warnings for code that does not strictly adhere to the
LRMs. In some cases, this is not desirable if you use a non-standard coding style that is
needed for important downstream applications. Leda allows you to make “semantic
exceptions” for cases like this using a simple button in the Checker tool.

This chapter explains a few of the basics for designing in VHDL and Verilog, and
provides examples of “semantic exceptions” that you should be aware of so that you can
enable or disable this setting prior to running the Checker. In addition, data and type
mappings for mixed-language designs are explained in detail. The last section explains
Leda’s support levels for Verilog 2001 constructs. This information is presented in the
following major sections:

• “Writing & Checking VHDL Designs” on page 52

• “Writing & Checking Verilog Designs” on page 56

• “Writing & Checking Mixed-Language Designs” on page 59

• “Mapping Data Types” on page 60

• “Verilog 2001 Support” on page 65

• “SystemVerilog Support” on page 65

• “Clock Grouping Feature” on page 66

• “Netlist Reader” on page 68

52 Synopsys, Inc. June 2006

Chapter 2: Writing and Checking HDL Designs Leda User Guide

Writing & Checking VHDL Designs
You write VHDL code in design entities. There are five types of design entities:
package, entity, configuration, package body, and architecture. VHDL code must respect
one of two standards: VHDL 87 or VHDL 93. All design entities in one design must use
the same mode. These modes are formally defined in the two VHDL Language
Reference Manuals (LRMs). To ensure compatibility with an LRM, you must first
compile or analyze the code. If compilation is successful, Leda stores the unit in a
library. You must provide the library’s name. The physical representation of a library is
usually (but not necessarily) a directory. A VHDL design can contain many libraries
organized hierarchically. In Leda’s terminology, this is called a VHDL project. Libraries
are divided into working libraries and resource libraries.

The difference between a working library and a resource library is that you use the
former to store the design units being developed, whereas the latter contains shared
resources such as standard packages or leaf cells. Examples of resource libraries are
STD, IEEE, GTECH, SYNOPSYS, VITAL and so on. You do not modify these libraries,
but you may need to reference them from your working libraries. The Checker only
checks the code in those libraries marked as working libraries.

If you want to apply chip-level checks to your design, you must first elaborate the
project. This means that you must resolve the connectivity between all design units. If
you instantiate one unit in another unit, the elaborator looks for the design unit that
represents the instantiated unit, and connects the ports as indicated by the instantiation.
For more information on VHDL elaboration, see the VHDL LRM. The Checker also
applies a hardware inference algorithm to build an image used to validate hardware
rules.

VHDL Semantic Exceptions
There are a number of semantic exceptions in VHDL. By default, the Checker observes
these semantic exceptions. You can deselect this setting using the Project Update Wizard
that comes up when you choose Project > Edit from the Checker’s main menu. Click on
the VHDL tab in this window, and deselect the “With semantic exceptions” check box at
the top left. Following are several VHDL code examples that cause compiler errors
unless you have “With semantic exceptions” enabled prior to running the Checker.

June 2006 Synopsys, Inc. 53

Leda User Guide Chapter 2: Writing and Checking HDL Designs

VHDL Semantic Exception—Example 1
When you compile a file with the semantic exceptions enabled, you use special visibility
rules for operators that do not conform to the standard rules defined in the VHDL LRM,
but are used by different commercial applications. Consider the following VHDL code:

library IEEE;
use IEEE.STD_LOGIC_1164.all;
package COMP_LOGIC_1164 is
 function "="(A,B: STD_ULOGIC) return BOOLEAN ;
 function "/="(A,B: STD_ULOGIC) return BOOLEAN ;
end package COMP_LOGIC_1164;

library IEEE;
use IEEE.STD_LOGIC_1164.all; -- imports implicit comparison operators
use WORK.COMP_LOGIC_1164.all; -- imports explicit comparison operators
architecture ARC of ENT is
 signal A,B,C : STD_LOGIC;
begin
 C <= '1' when A = B else '0'; -- illegal by the LRM
end;

If you compile the architecture ARC above with the standard visibility, the compiler
generates an error message for the signal assignment. The problem is that the operator
call “=” is ambiguous between the operator “=” implicitly defined with the type
STD_ULOGIC in the STD_LOGIC_1164 package and the operator “=” explicitly
defined in the COMP_LOGIC_1164 package.

If you compile the architecture ARC with semantic exceptions enabled, explicit
operators are given a higher priority in the visibility rules than implicit operators, which
allows this VHDL code to compile successfully using the explicit operator in the
COMP_LOGIC_1164 package.

54 Synopsys, Inc. June 2006

Chapter 2: Writing and Checking HDL Designs Leda User Guide

VHDL Semantic Exception—Example 2
Do not hide library names using other declarative items such as a component names. For
example, the following code causes a compilation error unless you have semantic
exceptions enabled prior to checking your design:

entity E is
end;
library FOO; -- = WORK
entity TOP is end;
architecture RTL of TOP is
 component FOO
 end component;
 for A : FOO use entity FOO.E;
-- in special mode, FOO after entity keyword is the library
-- and not the component
begin
 A : FOO;
end;

VHDL Semantic Exception—Example 3
Do not hide library names using unit names. For example, the following code causes a
compilation error unless you have semantic exceptions enabled prior to checking your
design:

entity E is
end;
library FOO; -- = WORK
entity FOO is
end;
architecture RTL of FOO is
 component E
 end component;
 for A : E use entity FOO.E;
-- in special mode, FOO after entity keyword is the library
-- and not the entity
begin
 A : E;
 B : entity FOO.E;
-- in special mode, FOO after entity keyword is the library
-- and not the entity
end;

June 2006 Synopsys, Inc. 55

Leda User Guide Chapter 2: Writing and Checking HDL Designs

VHDL Semantic Exception—Example 4
Do not hide component names using unit names. For example, the following code
causes a compilation error unless you have semantic exceptions enabled prior to
checking your design:

package P is
 component FOO end component;
end;
entity FOO is
end;
use WORK.P.all; -- makes component FOO potentially visible
use WORK.all; -- makes entity FOO potentially visible
entity TOP is
end;
architecture A of TOP is
begin
 I : FOO;
-- in special mode, component FOO is visible
-- (entity FOO is ignored)
end;

VHDL Semantic Exception—Example 5
Accept attribute specifications on entity declarative items in a corresponding
architecture declarative part (illegal in VHDL 93 only). For example, the following code
causes a compilation error unless you have semantic exceptions enabled prior to
checking your design:

entity E is
 port (P : in BIT);
end;
architecture A of E is
 attribute FOO : INTEGER;
 attribute FOO of P : signal is 1;
-- attribute specification must be written in entity
-- declarative part; this is accepted in special mode
begin
end;

56 Synopsys, Inc. June 2006

Chapter 2: Writing and Checking HDL Designs Leda User Guide

VHDL Semantic Exception—Example 6
Replace concatenation operations involving character literals and/or string literals using
equivalent string literals. This allows you to use string literals in places where you
require aggregates or locally static expressions, such as in subaggregate expressions or
in case choices. For example, the following code causes a compilation error unless you
have semantic exceptions enabled prior to checking your design:

architecture A of E is
 constant C : bit_vector(1 to 2) := "11";
 type M is array(1 to 2, 1 to 3) of bit;
 constant D : M := (("001"), ('0' & "10"));
-- '0' & "10" accepted as sub-aggregate in special mode
begin
 process
 variable V : bit_vector(1 to 3);
 variable W : integer;
 begin
 case V is
 when "111" => W := 0;
 when '0' & C => W := 1; -- accepted in special mode
 when '1' & "01" => W := 2; -- accepted in special mode
 when others => null;
 end case;
 wait;
 end process;
end;

Writing & Checking Verilog Designs
You write Verilog code in modules or UDPs. There are two main standards in Verilog:
one defined by the Verilog LRM, and another defined by industry-standard tools such as
VCS. Both standards are accepted by the Checker. To ensure compatibility with the
LRM, you must first compile or analyze the code. If compilation is successful, the
internal representation of the compiled module or UDP is stored in a reserved location,
usually a directory. The compiled modules can interrelate in a hierarchical way. In other
words, modules can contain instantiations of other modules. You can store common
resources, such as leaf cells, in a separate directory called a resource library. Leda refers
to this combination of modules, UDPs, and resource libraries as a Verilog project.

If you want to apply chip-level checks, you must first elaborate the project or design.
This means that you must resolve the connectivity between all the modules and UDPs in
the design. If you instantiate a module in another module, the elaborator looks for the
instantiated module and connects the ports as indicated by the instantiation. The
Checker also applies a hardware inference algorithm to build an image used to validate
hardware-based rules.

June 2006 Synopsys, Inc. 57

Leda User Guide Chapter 2: Writing and Checking HDL Designs

Verilog Semantic Exceptions
There are a number of semantic exceptions in Verilog. By default, the Checker observes
these semantic exceptions. You can deselect this setting using the Project Update Wizard
that comes up when you choose Project > Edit from the Checker’s main menu. Click on
the Verilog tab in this window, and deselect the “With semantic exceptions” check box
button at the top left. Following are several Verilog code examples that cause
compilation errors unless you have “With semantic exceptions” enabled prior to running
the Checker.

Verilog Semantic Exception—Example 1
Accept the following non-standard compilation directives (LRM section 16) in
exception mode. These all cause compilation errors unless you have “With semantic
exceptions” enabled prior to running the Checker:

• 'accelerate

• 'autoexpand_vectornets

• 'default_decay_time

• 'default_rsswitch_strength

• 'default_switch_strength

• 'default_trireg_strength

• 'delay_mode_distributed

• 'delay_mode_path

• 'delay_mode_unit

• 'delay_mode_zero

• 'disable_portfaults

• 'enable_portfaults

• 'endprotect

• 'expand_vectornets

• 'noaccelerate

• 'noexpand_vectornets

• 'noremove_gatenames

• 'noremove_netnames

• 'nosuppress_faults

58 Synopsys, Inc. June 2006

Chapter 2: Writing and Checking HDL Designs Leda User Guide

• 'protect

• 'remove_gatenames

• 'remove_netnames'

• 'suppress_faults

Verilog Semantic Exception—Example 2
Range definitions in a parameter declaration are defined in section 3.10 of the Verilog
LRM. This standard does not allow parameters declared with a range, as shown in the
following example:

parameter [3:0] p=4'b0101; // illegal in IEEE mode but legal in
// exception mode

This code causes compiler errors unless you have “With semantic exceptions” enabled
prior to running the Checker.

Verilog Semantic Exception—Example 3
Assignment of the return value of a function is defined in section 10.3.4 e of the Verilog
LRM. The LRM requires that in every function, an assignment to the return value is
made (implicit variable with the same name as the function). The following code causes
compilation errors unless you have “With semantic exceptions” enabled prior to running
the Checker:

function foo;
foo = 4; // This line is mandatory in IEEE mode, not in the exception

// mode
endfunction

Verilog Semantic Exception—Example 4
In a primitive declaration, when all the input values are set to X, the output must be X,
according to section 8.1.4 of the Verilog LRM. Primitive declarations that violate this
standard cause compilation errors unless you have “With semantic exceptions” enabled
prior to running the Checker.

Verilog Semantic Exception—Example 5
In unsized based literals, when the size of the literal is less than 32, the size is set to 32
and the literal is padded on the left.

June 2006 Synopsys, Inc. 59

Leda User Guide Chapter 2: Writing and Checking HDL Designs

Writing & Checking Mixed-Language
Designs

You can also check a project that contains both VHDL and Verilog source files. The
semantic exceptions defined in the previous sections also apply to mixed projects. This
section explains how to instantiate a block written in one language in the other language.
Remember that instantiations are only resolved when you elaborate a project.

Instantiating a Verilog Module in a VHDL Architecture
You instantiate a Verilog module or UDP inside a VHDL architecture using a
component instantiation statement. The instantiation of a Verilog module works just like
an entity instantiation in a VHDL-only design: Note the following:

• When the default configuration mechanism applies, the Checker looks for an entity
that has the same name as the component. If there is no entity, it looks for a Verilog
module.

• When you explicitly specify a configuration and the entity does not exist, the
Checker looks for a Verilog module.

Note that the default configuration must respect the usual rule in VHDL: same names in
interface between VHDL component declaration and Verilog unit. If one port or
parameter of the Verilog unit is not in upper-case or in lower-case, then you should use
extended characters to avoid problems with casing conventions.

Instantiating a VHDL Design Entity in a Verilog Module
You can instantiate a VHDL entity, VHDL design entity, or VHDL configuration in a
Verilog module using a module instantiation statement.

You can refer to this instantiated unit using either the name of the entity (as if it were a
module), or by using a Verilog extended identifier to specify the configuration. Table 4
provides some examples for instantiating a VHDL design entity in a Verilog module.

Table 4: VHDL Design Entity Instantiations in Verilog Modules

Example Description

entity u1 (a, b, c);

This instantiates a VHDL entity named u1 that
is located in the same library as the
instantiating module. The architecture you use
is the last compiled architecture of the entity.

60 Synopsys, Inc. June 2006

Chapter 2: Writing and Checking HDL Designs Leda User Guide

Mapping Data Types
In a mixed-language instantiation, you can map the VHDL ports to Verilog ports and
ensure type equivalence as shown in Table 5.

Note the following:

• When a scalar type receives a real value, Leda converts the real to an integer by
truncating the decimal portion.

• Treat type time as a special case. Leda converts the Verilog number to a time value
according to the 'timescale directive of the module.

\entity(arch) u1 (a, b, c);

This instantiates a VHDL entity named u1 that
is located in the same library as the
instantiating module. The architecture you use
is called arch. Note the use of extended
identifiers to specify the architecture name.

\MYLIB.entity u1 (a, b, c);

This instantiates a VHDL entity named u1 that
is located in a library called MYLIB. The
architecture you use is the last compiled
architecture of the entity. Note the use of
extended identifiers to specify the library
name.

\MYLIB.entity(arch) u1 (a, b, c);

This instantiates a VHDL entity named u1 that
is located in a library called MYLIB. The
architecture you use is called arch. Note the
use of extended identifiers to specify the
library name.

Table 5: Mapping VHDL Ports to Verilog Ports

VHDL Type Verilog Type

integer integer or real

real integer or real

time integer or real

physical integer or real

enumeration integer or real

Table 4: VHDL Design Entity Instantiations in Verilog Modules (Continued)

Example Description

June 2006 Synopsys, Inc. 61

Leda User Guide Chapter 2: Writing and Checking HDL Designs

• Leda assigns physical and enumeration types with values that corresponds to the
position number indicated by the Verilog number.

In a mixed-language instantiation, you can map the Verilog ports to VHDL ports and
ensure type equivalence as shown in Table 6.

Leda also allows for the following other types in mappings:

• bit

• bit_vector

• std_logic

• std_logic_vector

Leda maps VHDL bit types to Verilog states as shown in Table 7.

Leda maps VHDL std_logic types to Verilog states as shown in Table 8.

Table 6: Mapping Verilog Ports to VHDL Ports

Verilog Type VHDL Type

integer integer

real real

string string

Table 7: Mapping VHDL bit Types to Verilog States

VHDL bit Verilog State

'0' St0

'1' St1

Table 8: Mapping VHDL std_logic Types to Verilog States

VHDL std_logic Verilog State

'U' StX

'X' StX

'0' St0

'1' St1

'Z' HiZ

62 Synopsys, Inc. June 2006

Chapter 2: Writing and Checking HDL Designs Leda User Guide

Leda maps Verilog states to VHDL std_logic and bit types as shown in Table 9.

'W' PuX

'L' Pu0

'H' Pu1

'-' StX

Table 9: Mapping Verilog States to VHDL std_logic and bit Types

Verilog State VHDL std_logic VHDL bit

HiZ 'Z' '0'

Sm0 'L' '0'

Sm1 'H' '1'

SmX 'W' '0'

Me0 'L' '0'

Me1 'H' '1'

MeX 'W' '0'

We0 'L' '0'

We1 'H' '1'

WeX 'W' '0'

La0 'L' '0'

La1 'H' '1'

LaX 'W' '0'

Pu0 'L' '0'

Pu1 'H' '1'

PuX 'W' '0'

St0 '0' '0'

St1 '1' '1'

Table 8: Mapping VHDL std_logic Types to Verilog States (Continued)

VHDL std_logic Verilog State

June 2006 Synopsys, Inc. 63

Leda User Guide Chapter 2: Writing and Checking HDL Designs

Leda maps Verilog states with ambiguous strengths as follows:

• bit receives '0'

• std_logic receives 'X' if either the 0 or 1 strength components are greater than or
equal to strong strength.

• std_logic receives 'W' if both the 0 and 1 strength components are less than strong
strength.

VHDL and Verilog Identifiers
Since VHDL is not case-sensitive and Verilog is case-sensitive, you must resolve names
in mixed-language designs as explained in this section. The way each language stores
identifiers remains unchanged. In other words:

• VHDL stores identifiers in upper case.

• Verilog stores identifiers exactly as they appear in the source code, regardless of
case.

Verilog Instantiations of VHDL Design Units
There is no problem in this case. Leda looks for the instantiated module as it is written in
the source code. If the module is not found, Leda assumes that it is a VHDL unit and
converts the instantiation name to upper case. Leda also handles extended names (that
is, those beginning with a \ character).

StX 'X' '0'

Su0 'O' '0'

Su1 '1' '1'

SuX 'X' '0'

Table 9: Mapping Verilog States to VHDL std_logic and bit Types

Verilog State VHDL std_logic VHDL bit

64 Synopsys, Inc. June 2006

Chapter 2: Writing and Checking HDL Designs Leda User Guide

VHDL Instantiation of Verilog Design Units
You can instantiate any Verilog unit, regardless of its name. However, if the name is not
all upper-case or all lower-case, then you should use the extended characters in the
configuration specification or for the name of the component. Table 10 shows some
examples.

Note
If you instantiate a Verilog module in a VHDL architecture without
extended characters, Leda searches first using all upper-case then all
lower-case letters. If neither one is found, Leda assumes that the module is a
black box.

Port Naming in Default Associations
Component ports and generics should have the same names as instantiated unit ports and
generics when considering insensitive cases. But here again, the instantiation order is
important.

Table 10: Mapping VHDL Identifiers to Verilog Identifiers

Verilog Identifier VHDL Identifier

TOPMOD TOPMOD

topmod topmod

TopMod \TopMod\

top_mod top_mod

_topmod _topmod\

\topmod \topmod\

June 2006 Synopsys, Inc. 65

Leda User Guide Chapter 2: Writing and Checking HDL Designs

Verilog 2001 Support
Leda supports Verilog 2001 (V2K) constructs for language compliance checks. Most
V2K constructs are fully analyzed, whereas some are simply parsed and ignored. Note
that Leda accepts multidimensional arrays and references to them, but does not
synthesize them.

Leda does not support Configurations. Also, the following Verilog 2001 features are all
out-of-scope for Leda:

• Extended number of open files

• Enhanced file I/O

• Enhanced invocation option testing

• Enhanced SDF file support

• Enhanced VCD files

• Enhanced PLA system tasks

• Enhanced Verilog PLI support

To make Leda accept Verilog 2001 constructs in your source code when checking your
designs for errors, add the +v2k switch to your Checker command-line invocation. This
capability is not activated by default. Note that the +v2k switch is the same one used
with the Synopsys VCS simulator for Verilog 2001 coverage. If you are using the GUI,
you can make Leda accept Verilog 2001 constructs by selecting the 2001 radio button in
the Project Creation Wizard (Project > New from the Specifier GUI main window). The
default is Verilog 95.

SystemVerilog Support
Leda supports all of SystemVerilog 3.0, and SystemVerilog 3.1a assertions. To make
Leda accept SystemVerilog constructs in your source code when checking your designs
for errors, add the +sv switch to your Checker command-line invocation. This capability
is not activated by default. Leda also accepts the -sverilog switch for compatibility with
the Synopsys VCS simulator for SystemVerilog 3.0 coverage. If you are using the GUI,
you can make Leda accept SystemVerilog constructs by selecting the SystemVerilog
radio button in the Project Creation Wizard (Project > New) from the Specifier GUI
main window). The default is Verilog 95.

66 Synopsys, Inc. June 2006

Chapter 2: Writing and Checking HDL Designs Leda User Guide

Clock Grouping Feature
The clock grouping feature allows you to specify groups of synchronous clocks. The
Clock Domain Crossing (CDC) rules take this information as inputs to avoid reporting
violations on synchronous clocks.

To use the clock grouping feature do the following:

• Run Leda to extract the number of clocks from the design. If Leda detects more than
the maximum number of clocks, it dumps the clock file and exits before the
chip-level, netlist and SDC checks are run. You can set the maximum number of
clocks using the environment variable LEDA_MAX_CLOCKS. The default value
is 500. Set this variable as shown in the following example:
% setenv LEDA_MAX_CLOCKS 300

• Modify the clock file, using the clock grouping command set_clock_groups.

• Enable the clock file by setting the environment variable LEDA_CLOCK_FILE.
Set this variable as shown in the following example:
% setenv LEDA_CLOCK_FILE ./TEST/clk_file.txt

You can set LEDA_CLOCK_FILE with a relative pathname or an absolute
pathname and Leda accepts any extension for this file. However, Leda understands
this file as a Tcl sourec file and uses it to set up user clock groups.

• Run Leda

You can use the following new variables (see Table 11).

You can specify the clock groups using the following command:

set_clock_groups
Use the set_clock_groups command to specify exclusive or asynchronous clock groups.

Table 11: Environment Variables in Clock Grouping Feature

Label Usage

LEDA_MAX_CLOCKS Defines the maximum clock limit. Default
value is 500.

LEDA_CLOCK_FILE Sets this variable to the dumped modified
clock file. The CDC rules take this
information as input.

June 2006 Synopsys, Inc. 67

Leda User Guide Chapter 2: Writing and Checking HDL Designs

Syntax
set_clock_groups -group clocks_list -asynchronous [-name name]

Arguments
-group Specifies the list of clocks.

-asynchronous Specifies the asynchronous clock groups.

-name Specifies the name for clock grouping.

Example
set_clock_groups -name GR1 -group { top.clk1 top.clk2 } -asynchronous

Note
The clock grouping feature is not compliant with PrimeTime. It does not
support options like multiple -group, -exclusive, and clock group removal.

• You can use the command line option -clock_file to specify the synchronous clocks
in the design through the set_clock_groups command. The checker uses this
information for doing chip-level, netlist and SDC checks. You should specify the
file name (leda_<topname>_clock.tcl) with the -clock_file option. For example:
% leda -top topunit test.v -clock_file leda_topunit_clock.tcl -config
 cfg.tcl

Note
Using the environment variable LEDA_CLOCK_FILE to specify the clock
file is equivalent to using the -clock_file command line option.

68 Synopsys, Inc. June 2006

Chapter 2: Writing and Checking HDL Designs Leda User Guide

Netlist Reader
The Netlist Reader is an optimized Verilog compiler for reading large netlists. It
performs optimizations on the intermediate database generated, to ensure that only
relevant information is present. The netlist reader has the capability to read any Verilog
netlist faster, and with much less memory consumption. This enhances performance to a
large extent. The netlist reader accepts only a minimal subset of language constructs.
You cannot run block-level checks on code that is read by the Netlist Reader. To ensure
this, the block-level checker is automatically disabled when the netlist reader is invoked.
If your input Verilog netlist file contains syntax that is not recognized by the netlist
reader, then the standard Verilog compiler is automatically invoked.

Note
If you are using the Netlist Reader, you should run only the Chip-level and
Netlist-level rules.

Invoking the Netlist Reader
You can invoke the Netlist Reader from the command line, the Tcl shell, or the GUI.
When you use the Netlist Reader, it automatically disables testing for leda on/off macros
and disables the block-level checker.

From the command line, invoke the netlist reader by using the option
–use_netlist_reader. For more information, refer “Common Command-Line Options
and Switches” on page 148.

From the Tcl shell, invoke the netlist reader using the option –netlist_reader with the
following read commands.

leda> read_verilog –netlist_reader
leda> read_sverilog –netlist_reader
leda> read_files –format verilog –netlist_reader

For more information, refer “Rule Tcl Command Reference” on page 197.

In GUI mode, invoke the netlist reader by checking the “Activate Netlist Reader”
checkbox in the “Project Creation Wizard” window under the section “Specify Compiler
Options”.

You can run the netlist reader only on a single file. It ignores preprocessing options such
as –y, -v, +incdir, etc.

June 2006 Synopsys, Inc. 69

Leda User Guide Chapter 2: Writing and Checking HDL Designs

Netlist Reader BNF
This section describes the BNF grammar accepted by the netlist reader. If any other
constructs are present in an input file, the netlist reader treats it as a syntax error and
exits. Then the standard Verilog compiler attempts to compile the file.

source_file ::= { module_definition }

module_definition ::= module identifier [(list_of_ports)] ;

 module_item_declarations

module_statements

 endmodule

list_of_ports ::= port { , port }

port ::= identifier

module_item_declarations ::= { net_type [range]
 list_of_net_identifiers ; }

net_type ::= wire

| tri

| input

| output

| inout

| supply0

| supply1

range ::= [integer : integer]

list_of_net_identifiers ::= identifier { , identifier }

module_statements ::= { assign_statement

 | instantiate_statement

 }

assign_statement ::= assign identifier =

name_id

| numeric_value

;

70 Synopsys, Inc. June 2006

Chapter 2: Writing and Checking HDL Designs Leda User Guide

instantiate_statement ::= identifier [identifier]
 (list_of_port_connections) ;

list_of_port_connections ::= port_connection { , port_connection }

port_connection ::= . identifier (actual)

 | actual

actual ::= name_id

 | concatenation

 | numeric_value

name_id ::= identifier [[integer [: integer]]]

numeric_value ::= 1’b1 | 1’b0 | 1 | 0

June 2006 Synopsys, Inc. 71

Leda User Guide Chapter 3: Modifying and Creating Rules

3
Modifying and Creating Rules

Introduction
There are two main tools in Leda: the Specifier and the Checker. You use the Specifier
to build rules that are then used by the Checker on your HDL code to ensure that it
complies with those rules. You need an optional Specifier license to create and compile
new rules, but a Checker license is all you need to configure the prepackaged rules.

This chapter provides detailed procedures for how to configure the prepackaged rules
and create new rules to check your HDL code with, in the following major sections:

• “About Rules, Rulesets, and Policies” on page 72

• “Using Configurations” on page 72

• “Configuring the Rule Wizard” on page 73

• “Configuring Prepackaged Rules” on page 74

• “Locking the Rule Wizard” on page 75

• “Using the Rule Wizard to Configure Rules” on page 77

• “Creating New Rules” on page 79

• “Defining Macro Values for Rules” on page 82

• “Exporting and Importing Policies” on page 86

72 Synopsys, Inc. June 2006

Chapter 3: Modifying and Creating Rules Leda User Guide

About Rules, Rulesets, and Policies
Leda organizes rules into rulesets. Rulesets are stored as ASCII text in ruleset.rl files for
VHDL or ruleset.sl files for Verilog. A ruleset can contain any number of rules and
template declarations, as well as previously compiled templatesets. A templateset is
similar to a ruleset, except that it only contains template declarations. Note that if a
ruleset uses a templateset and this templateset is recompiled, the ruleset becomes
obsolete and must also be recompiled. This is analogous to a VHDL architecture
becoming obsolete if its entity is recompiled.

A policy can contain any number of rulesets. If you are creating new rules yourself, you
can organize your rulesets into different policies in the way that is easiest for you to
manage. Each policy is represented as a top-level item in the rule hierarchy shown in the
Rule Wizard. You use the Rule Wizard to activate or deactivate rules for checking your
HDL code (see “Using the Rule Wizard to Select or Deselect Rules” on page 98).

Leda compiles rules from ASCII-based source code in ruleset.rl or ruleset.sl files and
places the results in policy libraries, which are stored in the $LEDA_PATH/
.leda_config.files directory. This is the default configuration.

Using Configurations
In Leda, a configuration is any file that you specify with $LEDA_CONFIG in the shell
or using the -config option in batch or Tcl modes. You usually create configuration files
using the Rule Wizard, but you can also write them by hand once you know the syntax
(see “Rule Tcl Command Reference” on page 197). A configuration file must be an
ASCII text file that contains valid Tcl commands for Leda.

In addition, a configuration may include a directory.files directory that contains
compiled rule binaries for custom rules that you create with the Policy Manager using
the Specifier tool. For example, if you have $LEDA_CONFIG pointing to a local or
custom rule installation, Leda stores the policies in the $LEDA_CONFIG.files directory.
If you have $LEDA_CONFIG set to:

/home/fr03/julius/FOO

and you used the Rule Wizard in the Specifier to create a new policy, in the toolbar Leda
says that the current configuration is saved into /home/fr03/julius/FOO. In this case,
Leda saves your compiled rule binaries in a directory named /home/fr03/julius/
FOO.files and your configuration commands in a file named /home/fr03/julius/
FOO.tcl. So, a configuration consists of a configuration file, and in the case of custom
rules, a directory.files directory that contains the compiled custom rules.

June 2006 Synopsys, Inc. 73

Leda User Guide Chapter 3: Modifying and Creating Rules

Configuring the Rule Wizard
If you have a Checker-only license, the first time you use the Rule Wizard to configure
prepackaged rules, Leda loads the default configuration located in the $LEDA_PATH/
.leda_config.tcl file. The default configuration contains about 70 prepackaged rules for
RTL checks. This default RTL configuration is one of four prebuilt configurations that
you can use with Leda (see “Using Prebuilt Configurations” on page 99).

To use a configuration other than the default ($LEDA_PATH/.leda_config.tcl), point to
your configuration file using the $LEDA_CONFIG variable in the shell or use the
-config option in batch or Tcl modes. For example:

% setenv LEDA_CONFIG /u/julius/leda/my_config.tcl

You can name your configuration file with any file name and extension that you want.
However, it is good practice to name configuration files with a .tcl extension for ready
identification. Your configuration file must contain valid Tcl commands for Leda (see
“Rule Tcl Command Reference” on page 197).

Caution
If you are a Checker-only user, do not set the LEDA_CONFIG variable
pointing to an empty directory before invoking Leda for the first time. This
causes Leda to issue a warning message about not being able to find the
policies that contain prepackaged rules. If you run into this, exit the tool,
unset the $LEDA_CONFIG variable, and then re-invoke Leda.

The last configuration that you save when working with the Rule Wizard becomes the
default configuration for the current session.

Saving Configurations
To save a configuration, choose Config > Save As from the Rule Wizard window, and
navigate to a directory where you have write permissions. In the Save Current
Configuration As window, specify the configuration file. Leda saves your configuration
in a config.tcl configuration file in that directory. If you have custom rules in your
configuration, Leda also saves the binaries for those rules in a directory.files directory
there.

Restoring Configurations
Leda does not have a restore capability for configurations that you work with in the tool.
If you want to be able to go back to the configuration you started with for any reason
after using the Rule Wizard or Tcl shell commands to configure rules, first save a copy
of the configuration file pointed to by $LEDA_CONFIG and the $LEDA_CONFIG.files

74 Synopsys, Inc. June 2006

Chapter 3: Modifying and Creating Rules Leda User Guide

directory (if present) someplace where they will not get overwritten. Then if you want to
restore your configuration to the same one you started with, exit the tool and copy the
saved configuration file and $LEDA_CONFIG.files directory (if present) back to the
location pointed to by $LEDA_CONFIG and restart the tool.

Rule Configuration Search Path
In all cases, Leda references the first configuration file it finds in the following list. Leda
also uses this search path when you save changes you make to prepackaged rules using
the Rule Wizard:

• -config batch option (see “-config full_path_to_file” on page 149)

• $LEDA_CONFIG

• $cwd/.leda_config.tcl

• $HOME/.leda_config.tcl

• $LEDA_PATH/.leda_config.tcl (default configuration)

Global Checking with the Same Rule Configuration
Another option is to set one configuration for the prepackaged rules that is referenced by
all engineers at your site. This can be useful for managers who want to make sure that all
engineers are checking their HDL designs using the prepackaged rules in exactly the
same way to ensure consistency. To configure the Rule Wizard this way, first set the
LEDA_CONFIG environment variable to a global rule configuration file as follows:

% setenv LEDA_CONFIG path_to_global_rule_configuration_file

Then, invoke Leda and make your changes to the prepackaged rules, as explained in
“Using the Rule Wizard to Configure Rules” on page 77. To make your changes apply
globally, have all engineers checking rules at your site set the LEDA_CONFIG
environment variable in their shell sessions to the global_rule_configuration_file you
set up.

Configuring Prepackaged Rules
If you just want to change the naming conventions used in a prepackaged rule or specify
a check to occur on the rising or falling edge of the CLK, for example, you can use the
Rule Wizard to configure the existing rule to meet your needs. All you do is modify the
value argument or node for a rule to the setting you want and save your changes. (Note
that not all of the prepackaged rules have value arguments.) You can also change the
rule label, error message, and message severity for any of the prepackaged rules.

June 2006 Synopsys, Inc. 75

Leda User Guide Chapter 3: Modifying and Creating Rules

For details about the current set of prepackaged rules available with Leda, see the Leda
Prepackaged Rules Guide. It is a good idea to familiarize yourself with what is available
in the prepackaged rules before creating new rules yourself.

Locking the Rule Wizard
If you have a Specifier license and write permissions to $LEDA_PATH, you can lock
the Wizard so that other users at your site cannot modify prepackaged or custom rule
configurations. Follow these steps:

1. Make sure $LEDA_CONFIG is not set to a custom rule configuration. The Rule
Wizard must be pointing to the default rule configuration in $LEDA_PATH/
.leda_config.tcl in order to lock the Wizard for all rule configurations which
reference the Leda installation in $LEDA_PATH:

% unsetenv LEDA_CONFIG

2. Invoke the Leda Specifier GUI:
% $LEDA_PATH/bin/leda -specifier &

3. From the Specifier’s main window, choose Check > Configure. This brings up the
Rule Wizard.

4. From the Rule Wizard window, choose Config > Checker Controls. This brings up
the Checker Control Panel (see Figure 12).

Figure 12: Checker Control Panel

5. The “Activate rule config in Rule Wizard” checkbox in the Permissions panel is
selected by default. To lock the Wizard, deselect this checkbox so that it appears as
shown in Figure 12, and click the Close button.

With the Wizard locked, rules in the default configuration and any custom rule
configurations cannot be changed by other users. Note that when the Wizard is locked,
Leda ignores rule_select and rule_deselect Tcl commands.

76 Synopsys, Inc. June 2006

Chapter 3: Modifying and Creating Rules Leda User Guide

When a user invokes the locked Rule Wizard (Check > Configure), Leda issues a
warning message that explains the current locked status (see Figure 13) before bringing
up the Rule Wizard window. If the Wizard is locked and you need to make changes, see
your system administrator.

Figure 13: Locked Rule Wizard Warning

June 2006 Synopsys, Inc. 77

Leda User Guide Chapter 3: Modifying and Creating Rules

Using the Rule Wizard to Configure Rules
To run the Rule Wizard, choose Check > Configure from the Specifier or Checker main
window. This brings up the Rule Wizard window (see Figure 14). Note that the tool
displays the configuration that it loaded in the message area near the top-left corner. To
load a different rule configuration, choose Config > Load configuration, and then
Custom. Use the resulting “Load a Configuration” window to navigate to the directory
where your configuration file is located.

Figure 14: Rule Wizard Window

Policy and Topic Views
The Rule Wizard has several tabs and panels. The Topic tab on the left side lists rule
topics in general categories that span multiple policies (for example, Clocks). The
Policy tab shows you the policies that contain these rules. The two tabs provide different
views of the same database of prepackaged rules. The top panel on the right side is blank
until you either select a ruleset from within a policy in the Policy tab or from the general
categories in the Topic tab. Then the top panel on the right fills up with all the rules from
the selected ruleset. Click on the Label, Language, and Message bars to sort the display
on any of these items in ascending or descending order. To deselect a rule for checking,
click on the check box. When you click on another rule, the check box appears blank,

Configuration
Loaded

78 Synopsys, Inc. June 2006

Chapter 3: Modifying and Creating Rules Leda User Guide

confirming that the rule is now deselected for checking. To select a rule for checking,
click on the blank check box. When you click on another rule, the check box appears
with a check mark inside, confirming that the rule is now selected for checking.

Configuring Rule Properties
When you click on an individual rule in the top-right window, the Config tab on the
lower right of the Rule Wizard displays the Severity, Message, Label, and HTML help
file name. To change the Severity for a rule, click on the Severity line to reveal a menu
from which you can choose a new setting. For the other configurable items, double-click
on the line and make your changes. Each rule in the tree has a colored button next to the
selection check box that shows the severity level for that rule (see Table 12).

Caution
For the best general-purpose results with prepackaged rules, it is advisable
to leave the rule labels and HTML help file names at their default values. In
particular, if you change the name of the HTML help file for any of the
prepackaged rules, the HTML-based help system will not work.

To save your changes, choose Save or Save As from the Config menu. The save option
saves the configuration in the directory indicated near the top left corner of the window
(using configuration...). If you want to save the configuration elsewhere, use the Save
As option and choose a directory where you have write permissions. Once saved, this
configuration becomes the current loaded configuration. If you want to use a different
configuration, choose Config > Load configuration, choose Custom from the
pull-down menu, and navigate to the desired configuration file.

Table 12: Rule Severity in Rule Wizard

Rule Color Severity

Note

Warning

Error

 Fatal

June 2006 Synopsys, Inc. 79

Leda User Guide Chapter 3: Modifying and Creating Rules

Creating New Rules
If the current set of prepackaged rules does not meet all of your HDL checking needs,
you can either copy and modify an existing rule or write a new rule from scratch. This
section explains how to create new rules using both methods. Before proceeding, review
Table 13 to determine which approach best meets your needs.

Note
You can also write design netlist-checking rules using Leda’s Tcl or C rule
APIs. You integrate compiled rule (C) or Tcl scripts (.tcl) into the Leda
environment using VeRSL wrappers and ruleset files, just like coding rules
(see “Creating New Policies” on page 81). For more information, see the
Leda Tcl Interface Guide or Leda C Interface Guide.

Table 13: Choosing a Method for Creating New Rules

If ... Then ...

One of the rules listed in the Leda
Prepackaged Rules Guide is similar to
the rule you want to implement.

Copy and modify the rule source code from the
$LEDA_PATH/rules/policy directory, as explained
in “Copying and Modifying Prepackaged Coding
Rules” on page 80. This is the easy way. It should
cover a high percentage of your custom rule needs.
The advantage here is that it is faster and you don’t
need to learn much about the rule specification
languages to get what you want.

None of the rules listed in the Leda
Prepackaged Rules Guide is similar to
the rule you want to implement.

Write your own custom rule from scratch using
VRSL (for VHDL) or VeRSL (for Verilog), as
explained in “Writing New Rules from Scratch” on
page 80.
The advantage here is that you develop expertise
with the rule specification languages that you can
later apply to future rule-creation needs.

80 Synopsys, Inc. June 2006

Chapter 3: Modifying and Creating Rules Leda User Guide

Copying and Modifying Prepackaged Coding Rules
To create a new coding rule using the copy-and-modify method, first review the Leda
Prepackaged Rules Guides to find one or more rules that are close to what you need.
There is one PDF file for each policy. The PDF books are located in the $LEDA_PATH/
doc directory. Note the policy names and rule labels so that you’ll be able to easily find
the VRSL or VeRSL source code in the Leda installation. Write down the rule labels of
interest and then follow these steps:

1. Navigate to the $LEDA_PATH/rules/policy directory, where policy is one of the
current prepackaged policies. For example:

% cd $LEDA_PATH/rules/rmm

2. List out the directory contents and note the .rl and .sl files. These are ruleset files
that contain the rule source code. For VHDL, open the applicable .rl ruleset file. For
Verilog, open the applicable .sl file.

3. Use your text editor to create a new my_ruleset.rl file for VHDL or my_rulset.sl file
for Verilog.

4. For each rule label, search for that rule’s source code in the .rl file (VHDL) or .sl file
(Verilog). Copy all of the source code for each rule to your new my_ruleset.rl or
my_ruleset.sl file. Be sure to copy both the “command” and “template” sections for
each rule.

5. Modify the rule source code as needed, and save the file.

6. Now that you have a customized ruleset file, you can proceed to the section on
“Creating New Policies” on page 81 and take it up from there.

Note
To learn how to modify VRSL or VeRSL code to meet your needs, see the
Leda Rule Specifier Tutorial. For complete syntax and reference
information, see the VRSL Reference Guide (VHDL) and VeRSL Reference
Guide (Verilog).

Writing New Rules from Scratch
To write new rules from scratch, first invoke the Specifier tool as follows (you use the
same tool for both Verilog and VHDL):

% $LEDA_PATH/bin/leda -specifier &

The Specifier main window opens; it looks identical to the Checker main window. The
only difference is the presence of a Policy Manager window, which you access through
the Rule Wizard (Check > Configure, then Tool > Policy Manager).

June 2006 Synopsys, Inc. 81

Leda User Guide Chapter 3: Modifying and Creating Rules

Creating New Ruleset Files
To create new ruleset files, follow these steps:

1. Using a text editor, type in the VRSL or VeRSL code for the new rules that you want
to create. You can use the text editor in the Specifier by choosing File > New. For
information on selecting an editor other than the Leda default text editor with Leda,
see “Selecting a Text Editor” on page 172.

2. For VHDL, create the file as ruleset.rl. For Verilog, create the file as ruleset.sl. Note
that “.rl” is the standard extension for VHDL ruleset files and “.sl” is the standard
extension for Verilog ruleset files.

Hint
You can find example VRSL and VeRSL code in the $LEDA_PATH/doc/
tutorial_specifier/rsl directory. The file names are rulset.rl (VHDL) and
ruleset.sl (Verilog).

Creating New Policies
Once you have a new ruleset.rl or ruleset.sl file that you either created by copying and
modifying some of the prepackaged rules, or by writing the rules from scratch, you need
to store the new rules in a policy. To do that, follow these steps:

From the Specifier main menu, choose Check > Configure. This opens the Rule
Wizard.

From the Rule Wizard, choose Tool > Policy Manager or click on the button (see
Figure 15). Note that the Specifier and Checker GUIs look identical, except that only the
Specifier tool includes the policy manager ($LEDA_PATH/bin/leda -specifier).

Figure 15: Invoking the Policy Manager

Click Here

82 Synopsys, Inc. June 2006

Chapter 3: Modifying and Creating Rules Leda User Guide

1. From the Policy Manager window, click on the VHDL or Verilog tab, as applicable.

2. Click on the New button on the right side of the display. Type in a name for the new
policy (for example, “my_policy”) and click on OK.

3. When the new policy appears in the left pane, click on it to highlight the name and
then click in the Rulesets pane. Click on the Add button.

4. Navigate to the location of the ruleset file you just created and click on the file name
(ruleset.rl or ruleset.sl). Then click on the Add button. This causes the tool to
compile your new rulesets.

5. Close the Policy Manager window.

You have now created a policy containing the rules defined in the ruleset.rl or ruleset.sl
file you developed. Your new policy and the rules it contains now appear in the Specifier
main window. Now you can select them for checking. You can later add any number of
new ruleset files to the same policy depending on how you want to organize your
custom rules.

Defining Macro Values for Rules
The Verilog and VHDL rule specification languages (VeRSL and VRSL, respectively)
allow for the use of macros that you later define for rule checking using a configuration
file that you put in Leda’s Rule Configuration Search Path (see page 74). In case of
conflicts, Leda uses the macros found in the last file found in this path.

Defining macro values for rules may be important because, in some cases, rules may be
too strict. For example, when testing legacy code, you may violate some naming
convention rules many times. You could always switch off these rules, but it is also
useful to be able to modify the rules online. For example, in the RMM policy, clock
signals must have the prefix clk_. This rule is written as follows:

template CLOCK_ID is clock
 limit identifier to “^clk_”
end

This rule is often violated in code that was written before the RMM was created or that
used another naming convention for clock signals. You can extend the rule definition to
include a variable parameter as follows:

template CLOCK_ID is clock
 limit identifier to ”<clock_name>”
end

June 2006 Synopsys, Inc. 83

Leda User Guide Chapter 3: Modifying and Creating Rules

If you modify a rule this way, you must then pass a value to the parameter clock_name
(the default is the name of the macro itself) before checking the rules by defining the
value for the clock_name macro in a configuration file using the following Tcl
command:

rule_set_parameter -rule rule_label -parameter (label | macro_name) \
-value value

For example, to set the value for the clock_name macro, use the following command:
rule_set_parameter -rule B_4404 -parameter clock_name -value clk

You can use simple regular expressions to define macro values. For example, to define
the clock_name parameter used in a rule, put the following line in your configuration
file:

rule_set_parameter -rule B_4404 -parameter clock_name -value \
{^clk_\|^clock$\|^clk_n$\|^clk_r$}

This loosens up the rule for clock naming, so that all the cases covered in this macro
definition become legal and do not cause the Checker to flag an error.

Note
In general, results you get using regular expressions with Leda are the same
as you get using grep. Both programs use regex (5) to parse regular
expressions. Note that Leda currently supports simple regular expressions,
but not extended regular expressions of the form \{m\}, \{m,\}, or \{m,n\}
that are supported with egrep or grep -E. Also, Leda uses the GNU version
of regex, which differs slightly from the UNIX version (for details see the
man pages).

For information on a set of predefined rule_set_parameter Tcl commands for
prepackaged rules that you can cut-and-paste from the manual and modify as needed,
see “Predefined Macros for Prepackaged Rules” on page 243.

84 Synopsys, Inc. June 2006

Chapter 3: Modifying and Creating Rules Leda User Guide

Using Predefined Macros to Constrain Identifiers
To allow for the representation of strings containing unit names, reserved strings are
defined that you can use as part of other strings. For example, in VeRSL, one such string
is:

<module>

If the Checker encounters the above sequence of characters in a string, it replaces it with
the name of the corresponding unit or module. You specify file names that include the
name of a unit as follows:

limit file_name in module_declaration to “<module>.v”
 message “Illegal file name for module”
 severity error

If the Checker is testing a module M that is not in file M.v, you get an error. Note that
you can also create your own user-defined macros. You could rewrite the above rule
using a user-defined macro called module_filename, as shown in the following VeRSL
example:

limit file_name in module_declaration to "<module_filename>"
 message “Illegal file name for module”
 severity error

Then, you set the value of your macro in the configuration file using a Tcl command as
follows:

rule_set_parameter -rule rule_label -parameter module_filename -value
<module>.v

For VHDL rules written in VRSL, you set values for the following variables in rules by
defining these values in your configuration file:

• architecture

• entity

• configuration

• component

• package

• library

• type

• formal

• target

June 2006 Synopsys, Inc. 85

Leda User Guide Chapter 3: Modifying and Creating Rules

Advanced Macro Programming
You can also build macros based on other macros. For example, you can create a basic
macro that defines a name and others that derive new names from the first one. If you
want to constrain an attribute to a multiple choice of regular expressions, you can define
a regular expression that expresses these multiple choices in the configuration file. This
makes the rule easier to understand and maintain. You use the same Tcl command
syntax, as shown in the following example:
set module_index ...
set module_more_info_index ...
set module_name01 module0; #module0 is a possible name for the instance
set module_name02 $module_index
set module_name03 $module_more_info_index

rule_set_parameter -rule rule_label -parameter instantiated_module_name
-value "$module_name01 | $module_name02 | $module_name03"

The definition order for macros in the configuration file is important. You must define a
macro before using it. Otherwise you get a Tcl error.

Constraining Max/Min Attributes to Predefined Values
You can use the max and min commands to constrain the number of elements in a given
Verilog clause. For example, suppose you want to limit the number of characters for the
module names. You can write this rule as follows:

template AB is identifier
 max character_count is 20
end
template MOD is module_declaration
 limit identifier to AB
end

You can also use these commands to disable the use of initial constructs in modules, as
shown in the following example:

max initial_construct in module_declatation is 0

86 Synopsys, Inc. June 2006

Chapter 3: Modifying and Creating Rules Leda User Guide

In some cases, it may be useful to constrain a max/min attribute to a value you define in
a macro. This makes the rule a generic one that you can use with your own parameters.
Then, to change the value of the macro, you only need to modify the configuration file,
while the original rule definition remains the same. For example, you could define the
previous rules as follows:

template AB is identifier
 max character_count is “<max_length>”
end
template MOD is module_declaration
 limit identifier to AB
end
max initial_construct in module_declatation is “<my_value>”

And then set the values for the max_length and my_value macros in your configuration
file as shown in the following examples:

rule_set_paramter -rule rule_label -paramater max_length -value 20
rule_set_parameter -rule rule_label -parameter my_value -value 0

Exporting and Importing Policies
At companies with multiple sites, you may need to build and modify policies at one site
owning Specifier licenses, and then export those policies to another site that only has
Checker licenses. Perhaps there is no direct network link between sites, or this link is too
slow or costly.

Leda provides a utility called export that creates a tar file containing a binary version of
a new policy. This executable is located in the $LEDA_PATH/utilities/export directory.
To use it, enter the following command from a directory where you have write
permissions:

% $LEDA_PATH/utilities/export/export policy_name

where policy_name is the name of the policy to be created.

For example:
% $LEDA_PATH/utilities/export/export IEEE_RTL_SYNTH_SUBSET

The export utility creates a tar file called ieee_rtl_synth_subset_rules.tar that you can
send to other locations. There is a utility called import_policy_name included in the tar
file that remote users can use to automatically re-install the exported policy. To install an
updated policy, type the following:

% mv policy_name_rules.tar $LEDA_PATH/rules/vhdl
% tar -xvf policy_name_rules.tar
% import_policy_namecv

June 2006 Synopsys, Inc. 87

Leda User Guide Chapter 3: Modifying and Creating Rules

Note
You can export and import policies across platforms between Solaris and
HP-UX, but there is no cross-platform compatibility between Linux and
Solaris or HP-UX.

88 Synopsys, Inc. June 2006

Chapter 3: Modifying and Creating Rules Leda User Guide

June 2006 Synopsys, Inc. 89

Leda User Guide Chapter 4: Checking Designs For Errors

4
Checking Designs For Errors

Introduction
This chapter explains how to build project files for your HDL code, select custom or
prepackaged rules to check it against, execute the Checker, and fix any errors that are
found. This information is organized in the following major sections:

• “Invoking the Checker GUI” on page 90

• “Creating Projects to Check HDL Code” on page 91

• “Propagating Constants” on page 96

• “Using the Rule Wizard to Select or Deselect Rules” on page 98

• “Deactivating Rules” on page 101

• “Setting & Saving Checker Preferences” on page 108

• “Running the Checker” on page 109

• “Fixing Errors Found by the Checker” on page 112

• “Sorting the Error Viewer Display” on page 116

• “Filtering the Error Viewer Display” on page 117

• “Viewing the Design Report” on page 120

• “Using the Path Viewer” on page 121

• “Using the Clock and Reset Tree Browsers” on page 126

• “Saving Error Reports” on page 127

• “Post-processing Batch Mode Log Files” on page 128

• “Updating Projects” on page 130

90 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

You can perform all the tasks in this chapter using either the standalone Checker tool, or
the Specifier tool, which is the same as the Checker except that it allows you to build
and compile new rules. Because these tools are so similar, the GUI displays for them are
almost identical. The only difference is that the Specifier has a Policy Manager window
(Check > Configure, then Tool > Policy Manager) that is not present in the Checker
tool. You use the Policy Manager window to compile new rules for the Checker.

Invoking the Checker GUI
First, make sure your environment is set up correctly (see “Setting Leda Environment
Variables” on page 317). Then, invoke the Checker as shown in the following example:

% $LEDA_PATH/bin/leda &

This brings up the Checker main window (see Figure 16). All the menus and functions
in the Checker tool are also available from the Specifier tool.

Figure 16: Leda Checker Main Window

Note
For information on checking the environment that Leda is currently
referencing, see “Checking Your Environment” on page 171.

June 2006 Synopsys, Inc. 91

Leda User Guide Chapter 4: Checking Designs For Errors

Creating Projects to Check HDL Code
Before you can use Leda to test your HDL source code against the prepackaged rules or
new rules that you built, you must first create a project file. A project file organizes your
VHDL or Verilog source files into easily managed units. Follow these steps:

1. From the main menu, choose Project > New. This opens the Project Creation
Wizard window. Enter the full path and name for your project in the Project Name
field at the top of the window, or enter just a project name and use the Browse
button to navigate to a directory where you want to store your project data. Then
click the Next button at the bottom right of the window to start the Wizard (see
Figure 17).

Figure 17: Project Creation Wizard Window

2. The first step in the Wizard is to Specify Compiler Options, as reflected in the title
at the top of the display. The display has tabs for VHDL and Verilog. For both
languages, there are check boxes that appear at the top of the tab:

92 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

With semantic exceptions

The first is “With semantic exceptions,” which is enabled by default. With this
check box selected, Leda observes semantic exceptions when it analyzes your HDL
source code. For more information on semantic exceptions, see “VHDL Semantic
Exceptions” on page 52 and “Verilog Semantic Exceptions” on page 57.

SYNOPSYS translate_on and translate_off directives

The second is “SYNOPSYS translate_on translate_off directives,” which is disabled
by default. If you want Leda to honor these pragmas in your HDL source code,
select this check box. With this feature enabled, Leda does not attempt to translate
code that is delimited by these pragmas. This can be useful for non-synthesizable
code such as testbenches in your project, for example, that would cause
unpredicatable results for hardware-based rules if you leave this option disabled.

Do not use case to distinguish identifier names

This check box appears only for Verilog, since VHDL is not case-sensitive. The
option is disabled by default. Select this check box if you want Leda to consider
identifier names to be the same where the case differs.

3. In the Severity Level panel, click on the radio button for the lowest severity level for
which error messages from the VHDL or Verilog analyzer will be printed. Analyzer
messages with a severity below the specified value are not printed. (This severity
level is only used for syntax analysis, not for checking.) The default is Warning.

4. Still from the Specify Compiler Options window in the Wizard, proceed to the
language-specific setup tasks for VHDL and Verilog:

VHDL

m In the Version pane, click on the 87 or 93 radio button, depending on the version
of VHDL you are using. The default is VHDL 93. You cannot mix VHDL 97
and VHDL 93 in the same design and check it with Leda.

Verilog

m In the Include Directories pane, use the Add button to navigate to any
directories that you want to be searched for included files in your design. To
remove an include file, select it in the window, and click the Remove button.

m In the Macro Definition field, specify the values for any preprocessor macros
that you want to be in effect for the analysis.

June 2006 Synopsys, Inc. 93

Leda User Guide Chapter 4: Checking Designs For Errors

m In the Version pane, click on the 95, 2001, or SystemVerilog radio button,
depending on the version of Verilog you are using. The default is Verilog 95.
For information on Leda’s support levels for Verilog 2001 and System Verilog,
see “Verilog 2001 Support” on page 65 and “SystemVerilog Support” on
page 65.

5. When you are done specifying your compiler options, click on the Next button at
the bottom of the window to proceed to the next step, Specify Libraries.

6. The Specify Libraries window has tabs for VHDL and Verilog:

VHDL

m In the Working Libraries pane, specify the logical names of working libraries
where your VHDL analyzer will store binary results of the VHDL analysis. If
you are not using any specific working libraries, leave this pane empty and the
tool will put your analyzed code into the default location.

m In the Resource Libraries pane, specify the logical names and mappings to the
physical locations of additional existing compiled resource libraries. These are
golden libraries that can be shared by multiple projects and users and usually
contain common packages. (By default, the standard IEEE, STD, and Synopsys
libraries are available.)

For more information on specifying and managing VHDL libraries, see
“Managing VHDL Libraries and Files” on page 313.

Verilog

m In the Working libraries pane, click on the New button and use the New Library
Window to specify the name of a working library that you want to add to your
project. When you click OK, the new library name appears in the Working
libraries pane. To remove a working library from the project, select the library
name in the pane and click the Remove button.

m In the Library directories and Library files panes, click on the Add button and
navigate to the locations of any required source code libraries to be searched by
the Verilog analyzer in order to resolve unresolved module instances. Click on
the Enable Checks check box if you want Leda to check selected rules in the
specified library directories or files.

7. When you are done specifying your compiler options, click on the Next button at
the bottom of the window to proceed to the next step, Specify Source Files.

94 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

8. The Specify Source Files window has tabs for VHDL, Verilog, and All. (The All tab
is for mixed-language designs.) Source files, in this case, means VHDL or Verilog
source files, the ones you want to check:

VHDL

m In the Directories/Files pane, click on the Add button. This opens the Add
Directory/File window. Navigate to the location of the .vhd or .vhdl files you
want to check. Highlight the file names and click on the Add button. Then Click
on the OK button to confirm your selections. You now see the full paths to the
directories or files you specified displayed in the Directories or Files panes.

Verilog

m In the Directories/Files pane, click on the Add button. This opens the Add
Directory/File window. Navigate to the location of the .v, .ve, or .inc files you
want to check. Highlight the file names and click on the Add button. Then Click
on the OK button to confirm your selections. You now see the full paths to the
directories or files you specified displayed in the Directories or Files panes.

9. When you are done specifying your HDL source files, click on the Next button at
the bottom of the window to proceed to the next step, Confirm & Create.

10. The Confirm and Create window has a Build and Check check box at the top that is
selected by default. If you deselect this check box, Leda analyzes your HDL files
and builds your project as specified in the Wizard, but does not run the Checker.
Leave this check box alone if you want Leda to also run the Checker after building
your project. Either way, click the Finish button at the bottom of the window to
proceed. If the tool displays a small Get Top Module/Design/Entity window, note
that this information is needed for checking chip-level rules. Specify the top module
or design entity and click on the OK button. Leda compiles the source files and

June 2006 Synopsys, Inc. 95

Leda User Guide Chapter 4: Checking Designs For Errors

executes the Checker. You should see something like the following screen
(Figure 18). This example shows the results for a mixed-language project that
contains both Verilog and VHDL source files.

Figure 18: Leda Checker Results

96 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Propagating Constants
If your design supports test mode, you can reduce the number of false errors reported by
the Leda Checker by specifying constants for primary inputs used in test mode (see
Figure 19).

Figure 19: Constant Propagation for Test Mode

For the circuit shown in Figure 19, Leda flags the gated reset as an error. However, if
you set the test_mode signal to a constant 1, both the mux and the “false” input are
masked off from the analysis, eliminating the false error.

Constant propagation is therefore particularly useful for design for test (DFT) rules, for
which Leda provides a prepackaged policy (see the Leda Prepackaged Rules Guides).

You can set constants for primary inputs and internal signals using the set_case_analysis
command in a simple ASCII text file. The syntax is:

set_case_analysis <value> <pin_or_port>

set_case_analysis <value> {<list of pin_or_port>}

Where:

<value> = 0 | 1 | zero | one

<pin_or_port> = /instantiation/hierarchy/to/internal/<pin> | <port>

For example:
set_case_analysis 0 P1

set_case_analysis 0 U1/P2

set_case_analysis 0 {P1, U1/P2}

set_case_analysis 0 P1(0)

0

1

test_mode

x

With test_mode set
to constant 1, this
logic is masked off

June 2006 Synopsys, Inc. 97

Leda User Guide Chapter 4: Checking Designs For Errors

In accordance with Design Compiler’s syntax, when you assign constants, make sure
top-level signals do not have hierarchical names. For example:

module top();
 wire en1, clk, rst, in1;
 reg out1;
inst I (en1, clk, rst, in1, out1);
endmodule

module inst (en1, clk, rst, in1, out1);
input en1, clk, rst, in1;
output out1;
reg out1;

wire en2,in2;
assign gated_clk=clk & in2;
assign gated_rst=rst & in2;
assign int_clk=(en1)?clk:gated_clk;
assign int_rst=(en2)?rst:gated_rst;
always @(posedge int_clk or posedge int_rst) if (int_rst) out1<=1'b0;
else out1<=in1;
endmodule

For this example, you set constants for the en1 and in2 signals as follows:
set_case_analysis 1 en1 <== No hierarchical info allowed here
set_case_analysis 0 I/en2

The signals you set with the set_case_analysis command take the specified fixed values
for subsequent Leda Checker runs.

Note
When you propagate constants, Leda also propagates the values for supply0
and supply1 signals throughout your design. If there is a conflict, values you
specify in your constraint file with the set_case_analysis command take
priority.

If you are using the Leda Checker in batch mode, use the -case_analysis_file option to
point to the ASCII text file that contains your set_case_analysis commands.

If you are using the Leda GUI, set constants for Leda to propagate using the Specify
Design Information window that comes up when you invoke the Checker (see Figure 24
on page 109). Specify the file that contains your set_case_analysis file commands.

If you are using Leda in Tcl shell mode, use the set_case_analysis command to
propagate constants (see “set_case_analysis” on page 304).

98 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Constant Propagation Limitations
Although Leda accepts subelements in the constraint file, it currently does not propagate
constants for them. The current version also does not propagate values for buses or
internal constants. Use simple scalar values to specify constants for primary input
signals only. Also, note that syntax errors in the constraint file currently cause the tool to
crash.

Using the Rule Wizard to Select or Deselect
Rules

With a project built, you can customize the Checker to run just the rules that you are
interested in against your VHDL and Verilog source code. First, set up your
environment for running the Checker (see “Leda Environment Variables” on page 317).
Next, define any macros needed for expanding rules prior to checking, as explained in
“Defining Macro Values for Rules” on page 82. Then from the main menu, choose
Check > Configure. This opens the Rule Wizard (see Figure 20).

Figure 20: Rule Wizard Window

Note
If you write custom rules using the Tcl or C APIs, be sure to specify error
message text in the VeRSL rule wrappers. Otherwise, the rules are not
visible in the Rule Wizard.

Configuration
Loaded

June 2006 Synopsys, Inc. 99

Leda User Guide Chapter 4: Checking Designs For Errors

Using Prebuilt Configurations
To load a different rule configuration, from the Rule Wizard choose Config > Load
configuration, and use the pull-down menu to select one of the prebuilt configurations:

• Gate-level—contains 90 chip-level and netlist/design rules selected from the Design
and Leda general coding guidelines policies.

• Leda-classic—contains roughly 1,300 rules drawn from every prepackaged policy
except DesignWare and STARC. It is close to the default configuration used in
previous versions of the tool.

• Leda-optimized—contains roughly 1,100 rules from the same policies as
Leda-classic. This configuration is “optimized” to remove similar rules from
different policies.

• RTL—contains about 70 rules drawn from the DC, DFT, Formality, RMM, and
Leda general coding guidelines policies. This configuration is the default.

• Custom—if you choose Custom, use the Load configuration window that pops up to
navigate to and select your custom configuration.

• sdc-rtl—contains rules for SDC checks at the RTL level. A duplicate of this
configuration is also available as sdc-quality-rtl prebuilt configuration.

• sdc-prelayout—contains rules for SDC checks at the prelayout level. A duplicate of
this configuration is also available as sdc-quality-prelayout prebuilt configuration.

• sdc-postlayout—contains rules for SDC checks at the postlayout level. A duplicate
of this configuration is also available as sdc-quality-postlayout prebuilt
configuration.

• sdc-top_versus_block—contains rules to verify consistency between block level
and top level design constraint file.

• sdc-equivalency—contains rules to verify equivalency between two SDC files of a
design.

You can also load the default configuration (same as RTL prebuilt configuration) from
the Rule Wizard by choosing Config > Load Default.

For information on using the SDC checker, see “Using the SDC Checker” on page 133.

For lists of all rules contained in the major prebuilt configurations, see “Leda Prebuilt
Configurations” on page 321.

100 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Policy and Topic Views
The Rule Wizard has several tabs and panels. The Topic tab on the left side lists rule
topics in general categories that span multiple policies (for example, Clocks). The
Policy tab shows you the policies that contain these rules. The two tabs provide different
views of the same database of prepackaged rules. The top panel on the right side is blank
until you either select a ruleset from within a policy in the Policy tab or from the general
categories in the Topic tab. Then the top panel on the right fills up with all the rules from
the selected ruleset. Click on the Label, Language, and Message bars to sort the display
on any of these items in ascending or descending order. To deselect a rule for checking,
click on the check box. When you click on another rule, the check box appears blank,
confirming that the rule is now deselected for checking. To select a rule for checking,
click on the blank check box. When you click on another rule, the check box appears
with a check mark inside, confirming that the rule is now selected for checking.

Selecting or Deselecting Rules
Use the Policy and Topic tabs on the left side of the window to select or deselect entire
policies, topics, or rulesets from either the policy or topic point of view. The Policy and
Topic displays give you a hierarchical way to navigate through the available rules. Use
the (+) or (-) box icons on the left side of each tab to expand or collapse the hierarchical
display. You can also use the pull-down menu on the toolbar to change the view to All
Rules, Verilog Rules, or VHDL Rules. Notice that when you change the selection status
for a ruleset on the left side of the window, how your change is reflected in the
individual rule display on the right side of the window.

The box icons in the Policy tab on the left side of the Rule Wizard display tell you the
rule selection status for the rules in each policy:

• An open box (clear) indicates that all rules in that policy are deselected for
checking

• A full box (set) indicates that all rules in that policy are selected for checking.

• A half-full box (partially set) indicates that some, but not all rules in that
policy are selected for checking.

• A green star next to the policy selection box indicates that the policy has a
subset of recommended rules selected for checking. The green star only appears
when you deselect a policy in the Rule Wizard window and then select it again for
checking, If you use the Wizard to change any of the defaults for that policy, the
green star goes away.

You also select and deselect rules using in Tcl shell mode. See the command reference
information for “rule_deselect” on page 216 and “rule_select” on page 239.

June 2006 Synopsys, Inc. 101

Leda User Guide Chapter 4: Checking Designs For Errors

Disabling Redundant Rules
The Topics tab on the left side of Rule Wizard gives you an easy way to review all of the
rules in the different policies related to a given topic. For example, if you click on the
(+) icon next to the Clocks topic on the left side of the display, the tree expands to show
a list of rules associated with clocks. One such rule is to avoid the use of both positive-
and negative-edge triggered flip-flops in the same design. Because this is a good
common sense design rule, it appears in several different policies. When you click on
the (+) icon just to the left of the description for this rule, the display expands to show
the different policies where this rule is available, including DFT, RMM, and STARC.

Let’s say that you want a rule to be enabled for checking, but you don’t want five
different error messages to appear just because the rule is duplicated in five different
policies. To narrow your error report display, you can use the Topics tab to view
redundant rules. Click on the rule you want to disable and deselect it for checking using
the check box on the right hand side of the Rule Wizard. Do this for all but one of the
redundant rules, leaving just one relevant rule enabled for checking. To disable all
redundant rules at once, first run the Checker, right click on the rule in the Error Viewer,
and select “Disable Redundant Rules” from the pop-up menu.

Deactivating Rules
In addition to the Rule Wizard that you typically use before you run the Checker, Leda
provides several other ways to deactivate rules: from a configuration file, directly in
sections of HDL source code where you want rule checking temporarily turned off for
specific rules, and even after a Checker run right from the Error Viewer. You can also
use a command-line option to translate .leda_select file commands into Tcl commands
that do the same thing. See the following sections:

• “Deactivating Rules with a Rule Configuration File” on page 102

• “Deactivating Rules from within HDL Source Files” on page 103

• “Deactivating Verilint Policy Rules” on page 104

• “Deactivating Rules from the Error Viewer” on page 105

• “Deactivating Rules By File” on page 106

• “Translating .leda_select Files” on page 106

102 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Deactivating Rules with a Rule Configuration File
You can edit a rule configuration file (for example, config.tcl) to select or deselect
policies, rulesets or rules. Point to this configuration file using the -config path_to_file
batch option or the $LEDA_CONFIG environment variable.

To deselect a rule, use the following Tcl command in your configuration file:
rule_deselect -rule rule_label

For example, to deselect a rule labeled B_1000:
rule_deselect -rule B_1000

To deselect a rule only in certain HDL files, use the following Tcl command in your
configuration file:

rule_deselect -rule rule_label -file file_name

For example, to deselect rule B_1000 only in myfile.v:
rule_deselect -rule B_1000 -file myfile.v

The rule_select and rule_deselect commands in your configuration file are
order-dependent. In the following example, the first command deselects all rules in the
Leda policy, and the second command selects one individual rule (B_1000) from the
Leda policy.

rule_deselect -policy Leda
rule_select -rule B_1000

After reading these commands in your configuration file (or entered at the leda> Tcl
mode prompt), the only rule that is selected for checking in the Leda policy is B_1000.

In this next example, the first command selects one rule in the Leda policy, and the
second command deselects all rules in the Leda policy:

rule_select -rule B_1000
rule_deselect -policy Leda

After reading these commands in your configuration file (or entered at the leda> Tcl
mode prompt), all rules in the Leda policy are deselected for checking.

In this example, the first command deselects an individual rule in the Leda policy and
the second command selects all rules in the Leda policy:

rule_deselect -rule B_1000
rule_select -policy Leda

After reading these commands in your configuration file (or entered at the leda> Tcl
mode prompt), all rules in the Leda policy are selected for checking, because the second
command overrode the first one.

June 2006 Synopsys, Inc. 103

Leda User Guide Chapter 4: Checking Designs For Errors

To turn off all rules in all policies in your configuration for checking, use the -all switch:
rule_deselect -all

To turn all rules back on for checking:
rule_select -all

In cases where two or more lines provide conflicting information, the last line read in
the configuration file takes precedence. For more information on Tcl commands that you
can use to manage rule configurations in Leda, see “Rule Tcl Command Reference” on
page 197.

Deactivating Rules from within HDL Source Files
You can deactivate rule checking for certain blocks of code using a configuration file to
specify the file names and numbers concerned (see “Fixing Errors Found by the
Checker” on page 112). However, this means that every time you modify that source
file, you also have to update the configuration file in your configuration directory.

Another approach to deactivating all rule checking for selected blocks of code is to add
the “leda off” and “leda on” pragmas to your HDL code. For example:

Module m (a, b, c):
Input a, b;
// leda off
Output c:
// leda on

means that the line “Output c:” does not get checked. Be sure to keep the “leda off” and
“leda on” pragmas paired up around blocks of code that you want to turn off for
checking. If you forget to include a “leda on” pragma at the end of a block of code
turned off for checking the rule is disabled until the end of that file.

Note
“leda off” and “leda on” pragmas can be used to disable block-level,
chip-level and netlist rules on a sub-part of the design.

You can also use these pragmas in a similar way to disable one or more individual rules
for selected sections of your HDL code. For example, if you enter the following
pragmas before a section of code in which you want to temporarily turn off rule
checking:

// leda rule_1 off
// leda rule_2 off
// leda rule_3 off

then Leda does not report on errors for those rules you specified, where rule_1, rule_2,
and rule_3, are valid rule labels.

104 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

If you then insert a “leda on” pragma for rule_1 later in your source code, as follows:
// leda rule_1 on

only rule_2 and rule_3 are disabled for checking from that point forward. For each “leda
off” pragma that you insert in your code to turn checking off for a specified rule, be sure
to enter a matching “leda on” pragma further on in the file, as shown below for our
example:

// leda rule_2 on
// leda rule_3 on

Note
The leda off/on pragmas can be disabled using the -ignore_rule_pragmas
option in the command line.

Deactivating Verilint Policy Rules
If you want to deactivate rules just from the Verilint policy, use the following pragmas in
your source code:

Module m (a, b, c):
Input a, b;
// verilint off
Output c:
// verilint on

The verilint off | on pragmas work just like leda off | on. The only difference is that they
apply only to prepackaged rules in the Verilint policy. You can use these pragmas to
disable one or more individual Verilint rules for selected sections of your HDL code. For
example, if you enter the following pragmas before a section of code in which you want
to temporarily turn off Verilint rule checking:

// verilint rule_1 off
// verilint rule_2 off
// verilint rule_3 off

then Leda does not report on errors for those rules you specified, where rule_1, rule_2,
and rule_3 are valid rule labels without the letter prefixes (use 410 for rule label W410).

If you then insert a “verilint on” pragma for rule_1 later in your source code, as follows:
// verilint rule_1 on

June 2006 Synopsys, Inc. 105

Leda User Guide Chapter 4: Checking Designs For Errors

only rule_2 and rule_3 are disabled for checking from that point forward. For each
“verilint off” pragma that you insert in your code to turn checking off for a specified
Verilint rule, be sure to enter a matching “verilint on” pragma further on in the file, as
follows:

// verilint rule_2 on
// verilint rule_3 on

For example, if the label of a Verilint rule you want to temporarily turn off for checking
is W410, specify just the number with the pragma:

// verilint 410 off

...

// verilint 410 on

For more information on the Verilint policy, including the individual rule labels, see the
Leda Verilint Rules Guide.

Deactivating Rules from the Error Viewer
Another way to deactivate checks for individual rules or all identical rules is to use the
Error Viewer after you run a check. Right click on the error message that you want to
deactivate, and select “Disable the rule” or “Disable redundant rules“. This causes Leda
to dim the affected messages and deactivate those rules for the next Checker run, as
shown in Figure 21.

Figure 21: Deactivating Rules from Error Viewer

Right Click
And Select

106 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Deactivating Rules By File
You can use the Select tab in the bottom right panel of the Rule Wizard to deactivate
rules only for specific HDL source files (see Figure 22).

Figure 22: Deselect Rules by File in Rule Wizard

First, select the rule that you want to deactivate in the top-right panel of the Rule
Wizard. Then click the small rectangular button in the Select tab. Use the Deactivate in
File window that comes up to navigate to and select the file where you want that rule
deactivated for checking. By default, the rule is now deactivated for the entire file, as
shown by the “All” in the Lines column. To deactivate the rule only for specific lines in
the file, click on the “All” string. This activates a pop-up menu where you can select
“Lines” instead.

Translating .leda_select Files
Leda no longer supports .leda_select files, but you can use a built-in translator to read
.leda_select files and translate them into files that contain equivalent Tcl commands. To
invoke the translator, run Leda with the -upgrade400 switch:

% leda -upgrade400 [-select file]

When you use this command, Leda looks for .leda_select files in the following
locations:

• $LEDA_SELECT_FILE

• $cwd

• $HOME

• $LEDA_PATH/.leda_config

Click Here

June 2006 Synopsys, Inc. 107

Leda User Guide Chapter 4: Checking Designs For Errors

Leda puts the output .tcl file in a .leda_select.tcl directory in the same directory where it
found the .leda_select file. Or, if you have $LEDA_SELECT_FILE set or use the old
-select file option on the command line when you invoke the translator, Leda creates a
file.tcl file in the specified directory.

In all cases, you must copy-and-paste the new Tcl commands from the output file
created by the translator into a configuration file in your configuration directory (see
“Deactivating Rules with a Rule Configuration File” on page 102).

During normal execution, Leda issues a warning message if it finds a .leda_select file in
any of the following locations:

• -select file (on the command line)

• $LEDA_SELECT_FILE

• $cwd

• $HOME

• $LEDA_PATH/.leda_config

108 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Setting & Saving Checker Preferences
When you finish selecting the rules you want to check, set your Checker preferences.

1. From the main menu, choose File > Preferences. This brings up the Application
Preferences window. From the list on the left, choose Checker (see Figure 23).

Figure 23: Checker Options in Application Preferences

2. All checks are enabled by default (block-level, chip-level, netlist, and constraint).
To disable any of these classes of checks, deselect the associated check boxes.

3. If you do not want Leda to treat signals in vectors or buses individually, select the
Disable bit blasting check box. This might be useful if you only want to run
block-level checks and want to speed up the performance of the tool.

Caution
Don’t disable bit blasting if you are running netlist checks. They may not
work right with bit blasting disabled.

4. When you are done setting your Checker preferences, click the OK button.

5. To set your application preferences back to the defaults, click the Reset button.

To save your Checker preferences, choose File > Save Preferences. Leda saves your
preferences in a $HOME/.synopsys_leda_prefs.tcl file. The next time you invoke the
GUI, Leda uses these preference settings if the file exists. Otherwise, Leda uses the
default preferences. You can also configure Leda to automatically save the Checker
preferences you specify using the File > AutoSave Preferences toggle switch.

June 2006 Synopsys, Inc. 109

Leda User Guide Chapter 4: Checking Designs For Errors

Running the Checker
From the main menu, choose Check > Run or click the run icon on the toolbar.
This brings up the Specify Design Information window (see Figure 24), which has three
tabs (Top Unit Tab, Test Clock/Reset Tab, and Checkers Tab). Work the tabs from
left-to-right.

Figure 24: Specify Design Information Window (Top Units Tab)

Top Unit Tab
1. Select the Top unit tab and specify the “top” file in your design using the Unit name

and Library name pulldown menus.

2. If you want Leda to display warning messages from the elaborator when performing
chip-level checks, deselect the Hide elaborator warnings check box at the top left of
the Top unit tab. Otherwise, Leda’s default behavior is to hide warning messages
from the elaborator.

3. The Max violations per rule is set to 100 by default. If you want Leda to show a
larger or smaller number of violations per rule, use the dial-up/down menu to set the
new number.

4. If you want to propagate constants in the design for this Checker run, enter the full
path to your constant propagation file in the Constant propagation constraints panel,
or use the Browse button to navigate to and select your constant propagation file
(see “Propagating Constants” on page 96).

110 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

5. If you are running Synopsys Design Constraint (SDC) checks, use the Synopsys
Design Constraints panel to enter the full path to the SDC file that you want to
check. For information about using the SDC checker, see “Using the SDC Checker”
on page 133.

Test Clock/Reset Tab
1. To create test clocks or resets from ports named in the Specify Design Information

window, click the Test clock/reset tab. This changes the display as shown in
Figure 25. Note that generation of data for the Clock and Reset Tree browsers can
slow Leda’s performance on large netlists. Use this feature only when needed. It is
off by default.

Figure 25: Test Clock/Reset Tab

2. For each test clock that you want to create:

m Select a port name from the Port names listbox.

m Click on the arrow button to add the selected name to the Create test clock
listbox.

m Specify Rising or Falling edge for the clock cycle using the radio buttons in the
Create test clock panel.

3. For each test reset that you want to create:

m Select a port name from the Port names listbox.

m Click on the arrow button to add the selected name to the Create test reset
listbox.

m Specify the first level (High or Low) for the scan shift phase.

June 2006 Synopsys, Inc. 111

Leda User Guide Chapter 4: Checking Designs For Errors

Checkers Tab
The initial values displayed in this tab are inherited from the Application Preferences
window Checker settings (see Figure 23).

Figure 26: Checkers Tab

Changes that you make here in the Checkers tab only affect the current run with the tool.

1. All checks are enabled by default (block-level, chip-level, netlist, and constraint).
To disable any of these classes of checks, deselect the associated check boxes.

2. If you do not want Leda to treat signals in vectors or buses individually, select the
Disable bit blasting check box. This might be useful if you only need to run
block-level checks and want to speed up the performance of the tool.

Caution
Don’t disable bit blasting if you are running netlist checks. They may not
work right with bit blasting disabled.

3. When you are done making all your selections, click the OK button. The Checker
compares your HDL source files against the policies or rules you selected, and
displays the results.

In GUI mode, Leda saves the Tcl commands from your setup and configuration files in a
leda_history.log file in the current working directory. This file is overwritten for each
new session.

112 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

For more information on Chip-level checkers and Netlist checkers, see Table 3

Fixing Errors Found by the Checker
After you run the Checker on a design, the main window fills up with a lot of detailed
information about your HDL design, including a complete hierarchy of all your source
files, a summary panel that reports the number and kind of errors found, and an Error
Viewer that you can use to learn more about the rules that were violated using the
HTML-based help system. There is also a Path Viewer and Clock and Reset Tree
browser that help you visualize errors for rules where tracing information is available.
Best of all, you can also hyperlink directly from the Error Viewer to the exact locations
in your HDL code where Leda spotted rule violations, make the fixes, and recompile
your project without leaving the tool. Figure 27 shows the Checker window after
running the demo project that comes with Leda.

Figure 27: Checker After Check

June 2006 Synopsys, Inc. 113

Leda User Guide Chapter 4: Checking Designs For Errors

You can use the Checker’s Error Viewer to review and fix errors found using the
Checker GUI mode (described here) or the command-line Checker (see “Using Leda
Batch Mode” on page 145). To fix your HDL code as Leda suggested, follow these
steps:

1. For each warning or message in the error report, click on the (+) box icon to the left
of the message in the Error Viewer. This expands the display to show the HDL
source file for the rule that was violated. When you click on the (+) box icon at this
next level, Leda displays part of the HDL file that was tested.

The offending line of code is indicated with a green pointer .

2. If tracing information is available for a violated rule, a logic gate icon appears next
to the file name and error message. To make the Path Viewer appear in the lower
half of the Error Viewer, click on the green logic gate icon . Use this view of the
error to visualize the circuit path causing the problem.

Note that when you have both the Path Viewer and Error Viewer windows open,
you can click on the green logic gate icon for any other chip-level rule in the Error
Viewer, and the Path Viewer changes to stay in sync with the rule you are
debugging.

3. For each warning or error message in the Error Viewer, double-click on the line of
code next to the green pointer. This opens a text editor on the file. The suspect code
is already highlighted in the file. Make your fixes and then choose File > Save from
the editor’s window to save your changes.

You can also use the icon next to the error message to split the top of the
window into a view of your HDL source file on the right, and the error messages on
the left. Note that you can’t edit the HDL source file from this view.

4. For each warning or error message in the Error Viewer, use the check boxes in the
display to keep track of the violations that you have debugged and fixed (see
Figure 27). Left click in a check box to make a check mark appear. Left click again
to toggle back and clear the check box. When you later save the log file, the status of
the check boxes for each violation is also saved in the log file. This way, when you
reload the log file (leda.log) the check boxes that you marked and saved from your
last session with the tool are displayed.

5. When you are done fixing the errors that you consider to be significant, choose
Checker > Run again from the main menu. Leda recompiles your HDL files and
checks them against the rules that you have activated. This time, since you corrected
the troublesome HDL code, your results come up clean, with no messages listed in
the Error Viewer.

114 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Reviewing Log, History, Errors/Warnings Tab in GUI

Figure 28: Log, History, Error/Warnings Tab

The Log tab present in the Leda GUI displays the processing messages and the results of
commands executed.

The History tab present in the Leda GUI displays the list of all commands that were
executed during the current session in sequence. You can also see “Edit” tab and
“Execute” tab present above the “History” tab. If you want to execute any of the
commands used earlier, choose the command from the list and click “Execute”.
Similarly, if you want to modify any of the previously used command, choose the
command from the list and click “Edit”. The selected command appears in the Tcl
command line. Now you can edit it and to execute it, press Enter key.

The Error/Warnings tab shows the errors/warnings encountered while executing a Tcl
shell command given by a user. These errors/warnings are the result of unsuccessful/
incomplete execution of a given command. For more information, see “Invoking the
Checker/Specifier GUI” on page 170

June 2006 Synopsys, Inc. 115

Leda User Guide Chapter 4: Checking Designs For Errors

Displaying Error Messages for STARC Policies
The messages displayed in the Error Viewer appear in English by default for all
prepackaged policies. However, the VER_STARC_DSG and VHD_STARC_DSG
policies contain a special feature that you can use to get error messages in Japanese for
these policies. To configure the Error Viewer for Japanese error messages, set the
LEDA_LANGUAGE environment variable to JAPANESE before you invoke the
Checker tool, as shown in the following example:

% setenv LEDA_LANGUAGE JAPANESE

Note
This feature only works for the VER_STARC_DSG and VHD_STARC_DSG
prepackaged policies. Also, the Japanese error messages do not appear in the
Leda Rule Wizard.

Getting Prepackaged Rule Help for STARC Policies
Prepackaged rule help in HTML is available for the VER_STARC_DSG and
VHD_STARC_DSG policies in both English and Japanese. To set the language for the
HTML rule help to Japanese, follow these steps:

1. Navigate to the html directory in the Leda installation tree:
% cd $LEDA_PATH/doc/html

2. To set the HTML rule help to Japanese, create symbolic links as follows:
% ln -s jpn/dsg_ver_jpn dsg_ver
% ln -s jpn/dsg_vhd_jpn dsg_vhd

3. To set the HTML rule help back to English, create symbolic links as follows:
% ln -s eng/dsg_ver_eng dsg_ver
% ln -s eng/dsg_vhd_eng dsg_vhd

Note that English is the default configuration.

116 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Sorting the Error Viewer Display
You can sort the results displayed in the Checker’s Error Viewer in a variety of ways, as
discussed in this section.

You can configure your preferences for the display by choosing File > Preferences from
the main window. This brings up the Application Preferences window (see Figure 29),
which has several categories listed in the panel on the left-hand side of the display. Click
on the Report category to view and edit your Error Viewer preferences. Specify how
you want the display sorted (by Label, Master Rule, File, Policy, Module/Unit, Severity,
or Master Rule). The default is Label. You can also sort the display using Report > Sort
by from the main menu.

Figure 29: Error Viewer Preferences Window

To make Leda generate a summary report at the top of the Error Viewer, click on the
“Include Summary” check box in the Report Preferences window. You can also toggle
the display of the summary report using Report > Summary from the main menu. With
the summary report open, you can click on any of the blue hyperlink totals to sort the
display in the Error Viewer by that item (see Figure 30).

Figure 30: Error Viewer Summary

Click any blue
hyperlinked
total to sort
display

June 2006 Synopsys, Inc. 117

Leda User Guide Chapter 4: Checking Designs For Errors

Filtering the Error Viewer Display
To filter the display in the Error Viewer, choose Report > Filter by from the main menu
and select the frame of reference for your filter from the available options (Label,
Master Rule, File, Policy, Module/Unit, Severity, or Master Rule). When you choose
one of these options from the pulldown menu, Leda brings up an “Enter regular
expression for filter” window. Enter a simple regular expression in the window, and
click OK. For example, if you choose Report > Filter by > Rule Label, and then enter
^B_ in the regex window, Leda shows you just the violated rules that start with B_ in the
Error Viewer.

Error Report Displays
The display you get in the Error Report depends on the sorts and filters that you have
applied. Leda determines the most appropriate view based on your sorting and filtering
selections. There are two basic types of displays:

• “Rule Display” on page 117

• “File Display” on page 119

Rule Display
In the rule display, the first level in the Error Viewer shows the severity, label, and
message for each rule that was violated. Leda displays the total number of violations for
each rule in parentheses at the end of this line. (see Figure 31).

Figure 31: Severity, Message, and Label in Rule Display

Use check
boxes to
mark off
errors as
you debug
them

Total
Violations

118 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

The second level in the rule display shows all violations of the rule, listed by file name.
From this view, you can hyperlink directly to a text editor and correct your source files
(see Figure 32).

Figure 32: File Level in Rule Display

The third level in the rule display shows the HDL code where the rule violation was
found, with the line indicated by a green triangle (see Figure 33).

Figure 33: HDL Fragments in Rule Display

Open text
editor on
source file

Error
pointer

June 2006 Synopsys, Inc. 119

Leda User Guide Chapter 4: Checking Designs For Errors

File Display
In the file display, the first level in the Error Viewer shows the file name and the number
of violations found in that file in parentheses at the end of the line. The second level lists
all the violations in that file. For each violation, the Error Viewer displays the severity,
label, and message for the rule that was violated (see Figure 34).

Figure 34: Error Level File Display

The third level shows the HDL code fragment where Leda found the violation (see
Figure 35). The third level also shows tracing information for chip-level errors, if
applicable. For information on chip-level tracing, see “Using the Path Viewer” on
page 121.

Figure 35: HDL Fragments in File Display

Number or
violations
in file

Open text
editor on
source file

Error
pointer

120 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Viewing the Design Report
If you have any chip-level rules selected when you run the Checker, Leda produces a
design report that provides detailed information about your design in the Design Report
tab on the right side of the main window (see Figure 36).

Figure 36: Leda Design Report

The Design Report tab provides information that includes:

• name of the top unit in the design

• number of pins in the top unit

• number of flip-flops and latches that Leda inferred in the design

• list of the primary clocks and resets

June 2006 Synopsys, Inc. 121

Leda User Guide Chapter 4: Checking Designs For Errors

Using the Path Viewer
For some chip-level rules, it can be useful to visualize the sub-hierarchy that caused an
error. For example, rules like the prohibition against asynchronous feedback loops may
involve a connection that passes through several layers of hierarchy. Identifying the
causes of such errors can be difficult with only source code and line numbers to help. To
solve this problem, Leda provides a Path Viewer window that you can use to view
connections over the entire design hierarchy, trace forward and backward in the
schematic, and link directly from there to your source code.

When you violate a chip-level rule, the Error Viewer sometimes shows a small green
circuit symbol (see Figure 37). To make the Path Viewer appear, click on the circuit
symbol.

Figure 37: Invoking the Path Viewer

This bring ups an integrated Path Viewer window in the lower half of the Error Viewer
(see Figure 38).

Figure 38: Path Viewer Window

Click on circuit
symbol

2. Click to toggle to circuit display

2. Click to
toggle to
error display

Double-cilck
any element
in the
diagram to
open text
editor on
source code

1. Click to
enlarge
window

122 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

If you cannot see all of the circuit diagram in the window, first enlarge the Path Viewer
or Error Viewer by clicking on the maximize icon on the top right. You can then use the
tabs at the bottom of the window to toggle back and forth between full views of the
Error Viewer and Path Viewer.

To the left of the Path Viewer window there are three tabs (Hierarchy, Clock Tree, and
Reset Tree). The Hierarchy tab on the far left shows each level of hierarchy in the
design, including concurrent statements in each block. To toggle the display of
concurrent statement information, select or deselect the check box next to the “Show
concurrent statements” text in the lower left corner of the window (see Figure 39).

Figure 39: Hierarchy Browser Window

The colors on boxes in the hierarchy display have the following meanings:

• Red for concurrent statements.

• Blue for instantiations. (Double click on the (+) box icon next to any blue box to
display the next level in the hierarchy.)

• Yellow for block and generate statements.

There are three types of hierarchy crossing symbols (see Figure 40).

Figure 40: Hierarchy Types in Path Viewer

Toggle
display of
concurrent
statements
on and off

Descending Ascending Inout Link
Hierarchy Hierarchy

June 2006 Synopsys, Inc. 123

Leda User Guide Chapter 4: Checking Designs For Errors

The Path Viewer on the right side of the display shows a circuit diagram of the
connection that caused the violation, as well as the hardware that appears on this path.
From this side of the window you can:

• Place the mouse pointer over any element in the diagram to display the full
hierarchical name of the element.

• Single-click any element in the diagram to highlight the corresponding element in
the hierarchical display on the left side of the window.

• Double-click any element to open the text editor on the corresponding source code
in your design and modify as needed to correct the error.

The currently selected item in the Path Viewer displays in white.

Using Trace Forward and Trace Backward
You can trace forward and backward in the design using the Path Viewer starting from
three kinds of objects (see Figure 41):

• Pins. Primary inputs can trace forward and primary outputs can trace backward.
Cells and instance pins can trace forward and backward.

• Cells. All cells (built-in and .db) can trace forward and backward. You cannot trace
instances.

• Nets. All nets can be traced. Note that some top-level instances may not show a
result.

Figure 41: Traceable Objects in Path Viewer

Before you begin, make sure bit blasting is enabled (this is the default). To check this,
choose File > Preferences > Checker and make sure the Disable Bit Blasting check box
is not checked.

Nets

Pins Cells

124 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

1. Left-click once on a graphical element in the Path Viewer window (for example, a
net, flip-flop, gate, or pin of a flip-flop or gate). The currently selected graphical
element turns white.

2. Notice that the trace forward and trace backward buttons on the GUI
toolbar are now enabled. Click one of the buttons to trace forward or backward in
the schematic. A new, larger Path Viewer window opens to show the results of the
trace. You can move this standalone Path Viewer anywhere you want on your
screen.

Figure 42: Extended/Standalone Path Viewer Window

If you prefer the schematic to display in the smaller Path Viewer window where you
started the trace, choose File > Preferences > Report, and select the check box for
“Use same path viewer for all operations.” Click the Apply button to make your
change effective for the current session, and then click OK to dismiss the
Application Preferences dialog box.

3. You can now trace forward or backward again in the standalone Path
Viewer window after selecting an element from which to begin the next tracing
operation.

June 2006 Synopsys, Inc. 125

Leda User Guide Chapter 4: Checking Designs For Errors

Note
If you run Leda in batch mode and load the log file in the GUI to analyze the
violations, the tool prompts you to see if you want to re-elaborate the design.
This re-elboration is required in order to use the tracing functions in the Path
Viewer.

4. When the second trace displays, either the Previous Schema or Next Schema
button on the Path Viewer toolbar is enabled, so that you can toggle back and forth
between schemas. This is also useful if you want to examine traces for more than
one violation at once. If you have multiple netlist or chip-level violations in the
Error Viewer, click the green circuit symbol to bring up the Path Viewer again on
another violation, left-click on a graphical element, and click the trace forward or
trace backward button. The standalone Path View window changes to show the
results of this most recent trace. You can now toggle back and forth between traces
for the two different violations by clicking the Previous Schema and Next Schema
buttons.

5. If you have a hierarchy crossing boundary symbol selected in the Path Viewer, (thin
orange rectangle), you can use the move up or move down buttons on the
toolbar to trace up or down one level in the hierarchy, depending on your location.
Note that these buttons do not work after you use the Previous Schema or Next
Schema buttons.

Scanning to Sequentials or Primary Ports (off by default)
If you want the trace to stop at the next sequential, primary port, or complex logic,
choose File > Preferences > Report, and select the check box for “Scan to sequential
and primary port.” Click the Apply button to make your change effective for the current
session, and then click OK to dismiss the Application Preferences dialog box.

Extending the Current Schematic (on by default)
When you first use the trace forward or trace backward buttons, the standalone Path
Viewer window comes up displaying the same circuit schema that you saw in the
smaller Path Viewer window inside the GUI’s main window. But now you get an
extended view of the schematic that also shows the result of the trace. From here, you
can continue to trace forward or backward using the tool bar buttons. If you don’t want
the first invocation of the standalone Path Viewer window to extend the current
schematic, choose File > Preferences > Report, and deselect the check box for “Extend
current schematic.” Click the Apply button to make your change effective for the current
session, and then click OK to dismiss the Application Preferences dialog box.

126 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Using the Clock and Reset Tree Browsers
To use the Clock and Reset Tree browsers, you must enable generation of the underlying
data using the -clockdump and -full_log switches in batch mode or the Specify Design
Information window (Check > Run) in GUI mode before running your checks. Then,
when you click on the Clock or Reset Tree tabs in the Path Viewer, Leda displays the
design hierarchies for clocks or resets in the left-hand side of the window (see
Figure 43), and shows the signal paths through the area of your design where Leda
flagged a rule violation in the schematic viewer on the right-hand side of the window.

Figure 43: Clock View in Clock and Reset Tree Browser

On the left-hand side of the Clock and Reset Tree window, Leda displays each flip-flop
and latch controlled by the associated clock or reset, so that you can trace how changes
in one portion of your design affect downstream sequential elements. You can
double-click the (+) box icons to expand the display to different levels in the design
hierarchy.

The Flipflops and Latches columns on the right-hand side of the window show the
inferred hardware counts at each level of the design hierarchy.

Note
The Design Report tab on the Leda main window also shows totals for
flip-flops and latches found in the design. In some cases, the number of
latches reported in the Design Report is greater than the number shown in
the Clock and Reset Tree windows. This is because some latches that are
inferred in the design may not be clocked. The number of flip-flops reported
in both places always matches.

When you click on objects in the schematic viewer, Leda highlights the corresponding
element in the design hierarchy on the left-hand side of the window. For example, when
you click on a flip-flop in the schematic viewer, Leda highlights that same flip-flop in
the hierarchy view, so that you can identify and trace the clock that is driving it.

June 2006 Synopsys, Inc. 127

Leda User Guide Chapter 4: Checking Designs For Errors

With these tabs active in the Path Viewer window, the elements in the Clock Tree and
Reset Tree hierarchical display have these additional color-coded meanings:

• Green for clocks and resets

• Yellow for inferred hardware such as latches and flip-flops

Saving Error Reports
To save an Error Report in HTML format for later analysis, choose Report > Save as
HTML from the main window. This brings up the “Save HTML report file as” window.
Specify the name you want for the HTML file in the text field immediately below the
displayed path (leda.html is the default).

Leda puts your HTML report in the current working directory by default. You can use
the text field to navigate to a different location for your output file if you want. Then
click on the OK button. This causes Leda to generate your Error Report and open the
browser on the output file. You can link directly from the HTML Error Report to the
HTML-based help for each rule that was violated to learn more about each issue.

In addition to information from the Error Report, Leda saves in HTML format the
information about your user environment and configuration settings that you see in the
Info Report tab. Leda uses a file named file_info.html to save this additional
information.

Note
Leda also generates a directory named file_name-html in the current
working directory. This directory contains other files that Leda uses to sort
your results.

128 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Post-processing Batch Mode Log Files
You can also use the Checker to view results stored in log files. You may have generated
these log files using the Leda in batch mode (with the -full_log option) or using the
Checker GUI. This mode of operation requires no project information. To open log files
and have the results displayed in the Error Viewer, choose Report > Open from the
Checker’s main window.

The Checker GUI generates one log file in a directory named project_name-logs, even if
one or more units or modules contain no errors. The batch-mode Checker generates a
single log file named leda.log by default. You can specify a different name for this log
file by using the -l switch when you run the Checker in batch mode. To use a single log
file in append mode, use the -lappend switch instead.

When you generate the log file through the Leda GUI or using the batch mode with the
-full_log switch, each message has the following syntax:

Nb : HDL_source_code
 ^^^^^^
HDL_File : Nb : Ruleset_Indicator >[Severity_Level] Rule_Label :
<Message>
#UNIT: HDL_LANG HDL_Library_Name> Unit_Name Full_HDL_File>
#RULE: Policy_Name Ruleset_Name Nb_Rule [MASTER_Nb]
#HTM1: [HTML_Link_to_rationale]
#HTM2: [HTML_Link_to_user_documentation]
#TRAK: HDL_File : nb [{, HDL_File : nb }]

A blank line separates messages. The last line gives a trace of the error message for
chip-level rules. This information is used by the GUI to track the error message through
the design hierarchy.

Attention
Error messages that do not have this format cannot be analyzed by the Error
Viewer.

Table 14 summarizes the effects of using different Checker command-line switches on
the content of the error messages printed on your screen and in the leda.log file when
using the Checker in command-line mode.

June 2006 Synopsys, Inc. 129

Leda User Guide Chapter 4: Checking Designs For Errors

The numbers correspond to the lines on a message. For example, if none of the options
are present, the first three lines are printed to the screen and in the log files. Note that, to
use the Error Report Viewer, you must first use the -full_log switch when you run the
Checker in command-line mode.

Generating Leda Summary Information (Info Report)
In command-line mode, using the -full_log switch or the -l logfile option causes Leda to
save the following kinds of summary information in a leda.inf file:

• Command-line options and switches you used when you invoked the Checker

• Information about your user environment in effect when you ran the Checker

• Configuration settings used by the Checker for that run

• Policy versions used and full paths to their locations

When you use the Checker from the GUI, Leda automatically saves this same
information by default (see “Checking Your Environment” on page 171). In both cases,
this summary information appears in the Info Report tab next to the GUI Error Viewer,
when you later review your results.

If you run Leda in batch mode and want this summary information to appear at the
beginning of the log file (leda.log), add the -summary switch to your batch invocation.
This way, the log file you generate in batch mode has the same format that you get when
you run a check in GUI mode.

Note
If you open two or more log files in the Error Report Viewer at the same
time, Leda does not display the Info Report. This is to avoid merging
information from two different Checker runs that may have used different
environments or configurations.

Table 14: Command-Line Checker Error Report Options

Switches/Options Default? STDOUT leda.log File

Null Yes First three lines First three lines

-old_format No No effect No effect

-full_log No No effect All lines

-nocode No No effect First two lines not present

130 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

Updating Projects
To update an existing project, follow these steps. For details on how to specify options,
libraries, and source files, see “Creating Projects to Check HDL Code” on page 91.

1. Choose Project > Edit from the main window. This brings up the Project Update
Wizard (see Figure 44).

Figure 44: Project Update Wizard

The Project Update Wizard steps you through different windows to update your project:

1. Specify Compiler Options

2. Specify Libraries

3. Specify Source Files

4. Confirm and Create

June 2006 Synopsys, Inc. 131

Leda User Guide Chapter 4: Checking Designs For Errors

These windows work the same way for updates as they do for creating new projects.
You can step through each window to review and change your Leda projects as needed.
Click on the Cancel button at any time if you are satisfied with your current project
settings. Or click the Finish button from the last window in the Wizard to rebuild your
projects with your updated settings in effect.

Note
For more information on setting libraries and resources, see “Managing
VHDL Libraries and Files” on page 313.

132 Synopsys, Inc. June 2006

Chapter 4: Checking Designs For Errors Leda User Guide

June 2006 Synopsys, Inc. 133

Leda User Guide Chapter 5: Using the SDC Checker

5
Using the SDC Checker

Introduction
Integrated circuit designers use Synopsys Design Constraint (SDC) files to specify
timing and area constraints for implementation and verification tools such as Design
Compiler and PrimeTime. SDC uses a Tcl-based format. All commands in an SDC file
must conform to Tcl syntax rules.

Leda Quality Checks
The Leda Constraint Checker verifies SDC quality by checking the following:

• Correctness of a SDC command

• Consistency between SDC commands

• Consistency between SDC and design

• Missing constraints

Leda Constraint Checker consists of ~150 pre-packaged SDC checks to verify quality of
SDC file for RTL, pre-layout and post-layout stages of the design flow. Leda Constraint
Checker has a programmable interface for you to write custom rules in tcl or C
language. For more information, see the "Leda Prebuilt Configurations" on page 321

Top-versus-Block SDC Checks
Leda Constraint Checker verifies consistency between block level and top level design
constraints files. Leda Constraint Checker verifies this consistency not by a command
level comparison, but rather by verifying whether, effective constraints at block level are

134 Synopsys, Inc. June 2006

Chapter 5: Using the SDC Checker Leda User Guide

contained in effective constraints at the top design level. Current pre-packaged checks to
verify consistency between block & top level constraints covers the following SDC
areas:

• Clocks

• Input & output delays

• Max/Min delays, false & multi-cycle paths

For more information, see the “SDC-top-versus-block Prebuilt Configuration” on
page 396

SDC Equivalency Checks
Leda Constraint Checker verifies equivalency between two SDC files of a design. Leda
Constraint Checker verifies the equivalency not by a command level comparison, but by
verifying whether effective constraints of both SDC files are same or not. Current
pre-packaged checks to verify the equivalency of two SDC files covers the following
SDC areas:

• Clocks

• Input & output delays

• Max/Min delays, false & multi-cycle paths

For more information, see the “SDC-equivalency Prebuilt Configuration” on page 397

This chapter explains how to use Leda to identify problems with SDC files, in the
following sections:

• “Simplified Usage Model for SDC Checker” on page 135

• “Supported SDC File Tcl Commands” on page 137

• “Leda SDC Checker Tcl Commands” on page 140

• “Using a Tcl File For SDC Checks” on page 141

• “Defining Parameters for SDC Rules” on page 142

June 2006 Synopsys, Inc. 135

Leda User Guide Chapter 5: Using the SDC Checker

Simplified Usage Model for SDC Checker
The Leda SDC Checker runs in Tcl Shell or batch mode. Basically, you read in and
elaborate your design, read an SDC file, run the check, and report your results. Leda
comes with a set of prepackaged rules for SDC checks (see the Leda Constraints Rules
Guide for a detailed list).

You select which SDC rules you want to check using a configuration file that you point
to using the check -config command. You can check as many or few rules as you
want in one run using rule_select commands in your configuration file (see
“rule_select” on page 239).

This usage model will suffice if you just want to check your SDC file for internal
correctness and consistency with your design. Follow these steps:

1. Because all of the prepackaged SDC checker rules are organized in one policy, you
can use a configuration file like this to select all of the rules in the SDC policy, as
shown in the following configuration file example:

rule_deselect -all
rule_select -p CONSTRAINTS

2. Invoke Leda in Tcl Shell mode or batch mode. You cannot use GUI mode to run
SDC checks:

% leda +tcl_shell

Note: You can also invoke the SDC checker in batch mode, using the following
syntax:

% leda files -top top_name -constraint_file SDC_file_name -sdc

3. In Tcl shell mode, read in the HDL source files that you cant to check:
leda> read_verilog path_to_file.v

-or-

leda> read_vhdl path_to_file.vhd

For more information, see “read_verilog” on page 296 or “read_vhdl” on page 299.

4. Elaborate the design by specifying the top-level module or entity:
leda> elaborate -top my_top_module -nohierdump

When you elaborate the design, this also clears the internal SDC database.

Note that the -nohierdump switch speeds up the tool. You only need to generate
hierarchy if you want to later use the hierarchy browser in the GUI after your
Checker run.

136 Synopsys, Inc. June 2006

Chapter 5: Using the SDC Checker Leda User Guide

5. The SDC Checker reads environment variables only through the
read_constraints command. You can set environment variables in a top-most
Tcl file that sources the constraint files and pass this top-most Tcl file to the
read_constraints command. For example, in the top-most Tcl file, you can set
the SYNTH environment variable as follows:

set SYNTH [getenv SYNTH]

6. Read in SDC files in top-down order (that is, read files containing declarations
before reading files that use those declarations). Read in an SDC file using the
read_constraints command:

leda> read_constraints path_to_SDC_file

7. Read in the constraint file of a block using the read_constraints command:
leda> read_constraints -block instance_name path_to_block_SDC_file

8. Run the Checker using the check command with the -sdc switch and pointing to
the configuration file using the -config option:

leda> check -sdc -config path_to_config_file

9. Report your results:
leda> report

Leda prints the results of your SDC Checker run on STDOUT and saves the
information in a leda.log file. To see the results displayed in the GUI Error Viewer,
choose Report > Open from the Checker’s main window after running a check and
load the leda.log file.

10. Exit the tool:
leda> quit

Note
You can also write your own custom SDC checker rules in Tcl or C/C++
using the supplied Constraint Query Language (CQL) APIs.

June 2006 Synopsys, Inc. 137

Leda User Guide Chapter 5: Using the SDC Checker

Supported SDC File Tcl Commands
Leda accepts SDC files you use with Design Compiler and PrimeTime, but parses and
ignores application-specific SDC commands not needed for it’s checks. Leda supports
the SDC commands listed Table 15 and Table 16.

Table 15: Supported SDC Design Constraint Commands

Information Types Commands

Operating condition set_operating_conditions

Wire load models set_wire_load_min_block_size
set_wire_load_mode
set_wire_load_model
set_wire_load_selection_group

System interface set_drive
set_driving_cell
set_fanout_load
set_input_transition
set_load
set_port_fanout_number

Design rule constraints set_max_capacitance
set_max_fanout
set_max_transition
set_min_capacitance
set_min_fanout

Timing constraints create_clock
create_generated_clock
set_gating_clock_check
set_clock_latency
set_clock_transition
set_clock_uncertainty
set_data_check
set_disable_timing
set_input_delay
set_max_time_borrow
set_output_delay
set_propagated_clock
set_resistance

138 Synopsys, Inc. June 2006

Chapter 5: Using the SDC Checker Leda User Guide

Timing exceptions set_false_path
set_max_delay
set_min_delay
set_multicycle_path

Area constraints set_max_area

Power constraints set_max_dynamic_power
set_max_leakage_power

Porosity constraints set_min_porosity

Logic assignments set_case_analysis
set_logic_dc
set_logic_one
set_logic_zero

Table 15: Supported SDC Design Constraint Commands (Continued)

Information Types Commands

June 2006 Synopsys, Inc. 139

Leda User Guide Chapter 5: Using the SDC Checker

Specifying Design Objects
Most of the constraint commands require a design object as a command argument. SDC
supports both implicit and explicit object specification.

To avoid ambiguity, explicitly specify the object type using a nested object access
command. For example, if you have a cell in the current instance named U1, the implicit
specification is U1 and the explicit specification is [get_cells U1].

All SDC object names are case-insensitive to Leda. For example, theses two commands
are equivalent:

create_clock -name CK -period 1 -waveform { 0 5 } {ck1 ck2}

create_clock -name ck -period 1 -waveform { 0 5 } {ck1 ck2}

Table 16: Supported SDC Design Object Commands

Design Object Access Command Description

design current_design A container for cells. A block.

clock get_clocks
all_clocks

A clock in a design
All clocks in a design

port get_ports
all_inputs
all_outputs

An entry point to or exit point from a design
All entry points to a design
All exit points from a design

cell get_cells An instance of a design or library cell

pin get_pins An instance of a design port or library cell pin

net get_nets A connection between cell pins and design ports

library get_libs A container of library cells

lib_cell get_lib_cells A primitive logic element

lib_pin get_lib_pins An entry point to or exit point from a library cell

140 Synopsys, Inc. June 2006

Chapter 5: Using the SDC Checker Leda User Guide

Handling Errors in SDC Files
When you read an SDC file into Leda using the read_constraints command, the
SDC file parser issues error messages in the following cases:

• Syntax errors (for example, when a required option is missing)

• If an option requires only one signal but the corresponding command returns no
signal or more than one signal. For example, the -source option below requires
one signal, but the function get_pins returns two signals:

create_generated_clock -name CLK_BY_4 -source [get_pins {CLK}] \
 -divide_by 2 [get_pins {CLK_BY_4_reg/Q}]

Leda does not perform any semantic checks on SDC files.

Leda SDC Checker Tcl Commands
Leda supports a few special built-in Tcl commands for use with the SDC checker:

• Use the read_constraints command to read in an SDC file that you want to
check. When you issue the read_constraints command, Leda reads the
specified SDC file and stores the results in an internal database; it does not source
the data like PrimeTime’s sdc_read command. Read in SDC files in top-down
order (that is, read files containing declarations before reading files that use those
declarations).

• Use the sdc_apply command to apply the values for set_case_analysis commands
to Leda’s internal database. In order for this command to take effect you must next
use the propagate command.

• Use the propagate command to propagate constants for signals defined with
set_case_analysis commands in your SDC file.

In addition to these SDC-specific commands, you can use other general-purpose Leda
Tcl commands in SDC checker Tcl scripts that you write for Leda (see “Using a Tcl File
For SDC Checks” on page 141).

Note
For complete reference information on the built-in Tcl commands in Leda
that you can use to configure rules, manage projects, and run checks, see
“Using Leda Tcl Shell Mode” on page 187.

June 2006 Synopsys, Inc. 141

Leda User Guide Chapter 5: Using the SDC Checker

Using a Tcl File For SDC Checks
For more complicated SDC checks, you can read a Tcl file directly into Leda that
contains SDC Checker commands. This is useful for stored procedures such as
regression tests that need to be run over and over again. Figure 45 shows an example Tcl
file that you can use to run SDC checks in Leda.

Figure 45: Tcl File with SDC Checker Commands

Leda assumes that the SDC file version for your constraint files is 1.4. If your SDC files
conform to a different version, use the set sdv_version command to specify the
version in the first line of your Tcl script, as shown in this example.

Note the order dependency in this Tcl file. You must read the HDL source files and
elaborate the design before you read an SDC file. This example uses the
read_verilog command to read Verilog design files, but you can also use the
read_vhdl command to read VHDL design files. For more information, see
“read_verilog” on page 296 or “read_vhdl” on page 299.

The sdc_apply commands apply constants specified with set_case_analysis
commands in the SDC file to the elaborated database.

The propagate commands propagate constant values specified in your SDC file using
set_case_analysis commands.

set sdv_version 1.5
read_verilog <files>
elaborate -top TOP # cleans the SDC database

read_constraints file.sdc
sdc_apply -case_analysis
propagate –case_analysis
check –sdc –top TOP -config Blk_Test_RTL_Synth.tcl
report

read_constraints file2.sdc
sdc_apply -case_analysis
propagate –case_analysis
check –top B1 –sdc –config Blk_Func_RTL_Synth.tcl
report
check –top B1 -sdc –config Blk_Cross_Modes_RTL_Synth.tcl
report

142 Synopsys, Inc. June 2006

Chapter 5: Using the SDC Checker Leda User Guide

In Figure 45, we run three separate checks, using the check command with the -sdc
switch. The first check:

check –sdc –top TOP -config Blk_Test_RTL_Synth.tcl

runs on the first SDC file read in (file.sdc). The -config option points to a
configuration file (Blk_Test_RTL_Synth.tcl) that specifies the SDC rules that we
want to check.

The second check:
check –top B1 –sdc –config Blk_Func_RTL_Synth.tcl

runs on the second SDC file read in (file2.sdc) and points to a different configuration
file that specifies the set of rules we want to check.

The third check:
check –top B1 -sdc –config Blk_Cross_Modes_RTL_Synth.tcl

also runs on the second SDC file read in (file2.sdc) and points to a different
configuration file that specifies the set of rules we want to check.

The report commands generate the check results on STDOUT.

To run this SDC checker script in Leda, use the following command:
% leda +tcl_file my_tcl_file

Defining Parameters for SDC Rules
The rules that you use to check SDC files for different modes and contexts must be
parameterizable, so that you can define, for example, the names of the modes you want
to compare and the names of the signals that you want to check in test and functional
modes (for example). The Leda Constraints Rules Guide lists the current set of
prepackaged SDC rules that you can use.

To see the parameters that are supported by any rule, use the rule_get_parameter
command and specify the rule_label. For example:

leda> rule_get_parameter SDC_123

For more information about this command, see “rule_get_parameter” on page 217.

Then define the value for a rule parameter using the rule_set_parameter command.
For example:

leda> rule_set_parameter -rule SDC_123 -parameter MODE \
-value Test

June 2006 Synopsys, Inc. 143

Leda User Guide Chapter 5: Using the SDC Checker

You can set rule parameters interactively in the Tcl shell (as shown above), in the
configuration file that you also use to specify which rules you want to check in a
particular SDC Checker run, or in the Tcl script that you use to run SDC checks (see
“Using a Tcl File For SDC Checks” on page 141).

144 Synopsys, Inc. June 2006

Chapter 5: Using the SDC Checker Leda User Guide

June 2006 Synopsys, Inc. 145

Leda User Guide Chapter 6: Using Leda Batch Mode

6
Using Leda Batch Mode

Introduction
You can run the Leda Checker in batch mode by specifying switches and options on the
command line when you invoke the tool. This way, the tool runs to completion
unattended, which can be handy for script-driven test environments. This chapter
explains how to use the Checker in batch mode, in the following major sections:

• “Basic Usage Models and Rule Types” on page 145

• “Configuring the Checker” on page 146

• “Running Leda in Batch Mode” on page 148

• “Leda Batch Example Invocations” on page 162

• “Generating Projects in Batch Mode” on page 163

• “Checker Batch Mode Results” on page 166

Basic Usage Models and Rule Types
There are two basic ways to run the Checker in batch mode:

• Method 1—Pass a list of HDL files directly on the command line, with no switches.
This causes the Checker to first analyze or compile the code before checking all
units or modules contained in the specified HDL source files.

• Method 2—Use the -o option with the name of an HDL library or the name of an
HDL library and a unit already compiled into that library. With this approach, the
Checker skips the compilation phase. If you do not specify any units, the Checker
works on all units in the library by default.

146 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

Rules can be classified into four major families:

• Block-level Rules—unit-wide (for example, detect multiple clocks in an
architecture).

• Chip-level Rules—design-wide (for example, all flip-flops in the design must be
active on the rising edge).

• Netlist Rules—rules that run on the gate-level netlist for the design (for example,
control signal crossing clock domain without data transfer).

• SDC Rules—rules that check Synopsys Design Constraint (SDC) files for internal
consistency and consistency with the design that they constraint.

All checks are on by default. You don’t need to use the -block, -chip, -netlist, or -sdc
switches to enable these checks unless you want to run just one type of check. For
example, if you want to run chip-level checks only, use the -chip switch on the
command line. This enables chip-level checks and disables all other types of checks. Or,
if you want to run just block- and chip-level checks, use the -block and -chip switches
on the command line. This enables block- and chip-level checks and disables all other
types of checks.

Configuring the Checker
First, set up your environment for running the Checker (see “Leda Environment
Variables” on page 317). Next, define any macros needed for expanding rules prior to
checking, as explained in “Defining Macro Values for Rules” on page 82.

If you want to propagate constants in the Checker, enter set_case_analysis commands in
a constraint file, and point Leda to the file using the -case_analysis_file option (for more
information, see “Propagating Constants” on page 96).

Using plibs to Set Library Logical/Physical Mapping
When executing the Checker, you can specify the name of the library where you want
the results of the check to be stored using the –work switch. You must map this library’s
logical name to a physical location (file or directory). You do this mapping using the
plibs file. If no mapping exists, Leda uses the current working directory as the physical
location for storing results of the check.

June 2006 Synopsys, Inc. 147

Leda User Guide Chapter 6: Using Leda Batch Mode

In addition, working libraries must be able to find the physical locations of any resource
libraries used (for example, GTECH, VITAL). You can specify the physical location of
these resource libraries in a plibs file. The syntax of the plibs file is simple:

Library_Logical_Name /library/physical/location

For example:

IEEE $LEDA_PATH/resources/resource_93/IEEE

In this example, Leda evaluates the $LEDA_PATH variable at compile time, so you can
move your resource libraries anywhere you want on your network. The Checker looks
for two plibs files: a global plibs file and a local plibs file.The global plibs file is located
in the $LEDA_PATH/resources/resource_93 (or resource_87) directory or, if you have
$LEDA_RESOURCES defined, in $LEDA_RESOURCES/resource_93 (or
resource_87). You can use this mechanism to store the mappings of VHDL resource
libraries that you always require (for example, STD, IEEE, SYNOPSYS…).

Put the local plibs file in either the current working directory or in $HOME. If Leda
cannot find a local plibs file, it creates the physical directory corresponding to the
library specified with the –work switch in the current working directory. If you don’t
specify the –work switch on the command line, Leda creates a library named .leda_work
in the current working directory by default, unless there is an explicit mapping for the
logical name WORK in your local plibs file. You can overwrite the mappings specified
in the global plibs file by specifying different mappings in the local plibs file.

148 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

Running Leda in Batch Mode
Invoke Leda in batch mode as shown in the following example:

% $LEDA_PATH/bin/leda [list-of-options]

If you do not specify any options or you only specify the -project option, the Checker
GUI comes up. Depending on the command-line options and the rules to be checked, the
tool may elaborate your HDL code. This happens only if you have chip-level rules
selected and you activate chip-level checking. For VHDL files, make sure you specify
them in the correct compilation order.

The options that you can specify on the command line are sorted into three different
categories: VHDL-only, Verilog-only, and common. The common options can be used
on both VHDL and Verilog files. Following are detailed descriptions of the
command-line options:

• “Common Command-Line Options and Switches” on page 148

• “VHDL Command-Line Options” on page 157

• “Verilog Command-Line Options” on page 159

Common Command-Line Options and Switches
The options that you can use on both Verilog or VHDL files are described in Table 17.

Table 17: Common Command-Line Options and Switches

Option/Switch Description

-b Use the -b switch to make the Checker create one log file per unit
checked. The name of each file is leda_unit_name.log. Log files
are opened in write mode, thus overwriting the previous contents.
This switch also causes Leda to save information about your user
environment and Leda configuration in a file named leda.inf in the
same directory as the log file. If you want to specify a different
destination directory for the leda.inf file, use the -log_dir option
instead.
If you use both the -b and -summary options in the same batch
command, Leda prints the summary information in a separate
leda.log file.
For information on leda.inf files and how to use them, see
“Post-processing Batch Mode Log Files” on page 128.

-blast Bit blasting of vectors or buses is on by default starting with
version 4.1.

June 2006 Synopsys, Inc. 149

Leda User Guide Chapter 6: Using Leda Batch Mode

-block The Checker executes block-level checks by default as long as you
have some block-level rules selected. You can also use this switch
to run block-level checks only and disable all other types of
checks, regardless of the types of rules you have selected in your
configuration file.

-c Use the -c switch if you just want to compile your HDL source
files and not check them. When you use this switch, the Checker
only analyzes the code for compatibility with VHDL or Verilog
syntax and semantics.

-case_analysis_file Use the -case_analysis_file option to point Leda to an ASCII text
file containing set_case_analysis commands that specify constant
values for primary inputs or internal signals. For more
information, see “Propagating Constants” on page 96.

-chip The Checker executes chip-level checks by default as long as you
have some chip-level rules selected and use the -top option to
specify the top-level unit in your design. You can also use this
switch to run chip-level checks only and disable all other types of
checks, regardless of the types of rules you have selected in your
configuration file.

-clock_file Use the -clock_file option to specify the synchronous clocks in the
design with set_clock_groups command. The checker uses this
information for doinf chip-level and netlist checks. For more
information, see “Clock Grouping Feature” on page 66.

-clockdump In -full_log mode, use the -clockdump switch to enable use of the
Clock and Reset Tree browsers when you load a log file into the
Error Viewer after checking your design. Note that this switch can
slow Leda’s performance when checking large netlists. See “Using
the Clock and Reset Tree Browsers” on page 126.

-config full_path_to_file Use the -config option to point Leda to a configuration file
containing a rule configuration that you want to use. The rule
configuration you specify with this option takes priority over the
one specified with the LEDA_CONFIG environment variable.
You can use this option to specify one of the prebuilt
configurations (RTL, Gate-level, Leda-classic, Leda-optimized).
In this case, you don’t need to specify the full path, but the
configuration names are case-sensitive, and need to be typed
exactly as shown.
For more information on specifying rule configurations for the
Checker, see “Using Prebuilt Configurations” on page 99.

Table 17: Common Command-Line Options and Switches (Continued)

Option/Switch Description

150 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

-config_summary Use the -config_summary option to print the configuration
summary on the console. The summary is displayed after the rules
checking is done and is saved to $PWD/leda_config.log.

-constraint_file file For SDC checks, use the -constraint_file option to point to the
name of the SDC file to read in to the Checker (see “Using the
SDC Checker” on page 133). This option activates all the checkers
as well as the SDC checker.

+exec+rule_file.ext+function Use the +exec+ option to test a netlist checker rule developed in C
in the form of an object file or shared library, where rule_file.ext is
the object or shared library file that implements the rule and
function is the C function name for a rule defined in the
rule_file.ext. Do not include the “rule”_ prefix for your C function
when you specify the function name on the command line. For
example, if your C function is named rule_B6000, specify the
function as B6000.
The rule_file name extension (ext) is platform-dependent:

Solaris—rule_file.o
Linux—rule_file.so
HP-UX—rule_file.sl

For more information on Leda’s C interface for writing custom
netlist checking rules, see the Leda C Interface Guide.

-forecehierdump Use the -forcehierdump switch to force creation of the full
hierarchy browser database. By default, Leda creates hierarchy
browser data only for the first 1,000 instantiations in a module.
You can set a different number for the maximum number of
instantiations using the -maxhierdump N option. To disable
creation of hierarchy browser data, use the -nohierdump switch.

-full_inf Use the -full_inf switch to enable the display of deactivated rules
and the violation summary in the .inf file

Table 17: Common Command-Line Options and Switches (Continued)

Option/Switch Description

June 2006 Synopsys, Inc. 151

Leda User Guide Chapter 6: Using Leda Batch Mode

-full_log Use the -full_log switch if you want error messages printed to the
log files in full format, which looks like this:
1 nb : HDL_source
2 ^^^^
3 HDL_file : nb : ruleset [severity_level] label: message
4 #UNIT: HDL_library HDL_unit FULL_HDL_file
5 #RULE: policy ruleset rule_file nb_rule [MASTER_Nb]
6 #HTM1: [address]
7 #HTM2: [address]
8 [#TRAK: HDL_file : nb [{,HDL_file : nb}]]

Note: You must use the -full_log switch if you want to later use
the Error Report Viewer in the Checker GUI to review the error
messages. For more information, see “Post-processing Batch
Mode Log Files” on page 128.

+gui Use the +gui option to open the GUI.

-h Prints the tool’s help information.

-html html_report_name Use the -html option to make the Checker generate an error report
in HTML format. Use the html_report_name argument to specify
the name of the report file. Note that when you use this option, you
get the -full_log format by default.

-ignore_rule_pragmas Use the -ignore_rule_pragmas option to disable the leda off/on
pragmas while running the checker.

-l logfile Use the -l option to specify the name of the log file where you
want messages to be stored. If you don’t use this option or the -b or
-nolog switches, Leda uses the default log file name of leda.log.

-lappend logfile Does the same thing as the -l option, but opens the log file in
append mode. When you use this option, Leda does not create a
leda.inf file containing information about your user environment
and Leda configuration. In addition, if there is a pre-existing
leda.inf file created during a previous run of the Checker, Leda
removes it, because it is no longer valid.

-log_dir directory Use this option, in combination with the -full_log switch, to
specify a destination directory other than the default of the current
working directory for the logname.inf file, where Leda saves
information about your user environment and Leda configuration
when you run the Checker.

Table 17: Common Command-Line Options and Switches (Continued)

Option/Switch Description

152 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

-maxhierdump N Enables creation of the hierarchy browser database if there are less
than the specified number (N) of instantiations in a module. The
default is 1,000.

-maxmessages N Use the -maxmessages option to set the maximum number (N) of
messages per selected rule (per language) that Leda flags. The
default is 100. If you want Leda to report all violations regardless
of the number found, use the -nomaxmessages N switch.

-maxviolations N Use the -maxviolations option to set the maximum number (N) of
violations per selected rule that Leda flags. The default is 100. If
you want Leda to report all violations regardless of the number
found, use the -nomaxviolations switch.

-netlist The Checker executes netlist checks by default as long as you
some netlist rules from the Design policy or custom netlist rules
that you wrote selected and use the -top switch to specify the
top-level unit in your design. You can also use this switch to run
netlist checks only and disable all other types of checks, regardless
of the types of rules you have selected in your configuration file.

-nobanner Use this switch to stop the Checker from printing a banner.

-noclockdump Disables generation of data for the GUI Clock and Reset Tree
browsers. The Clock and Reset Tree browsers are enabled by
default.

-nocode Use the -nocode switch to reformat log file error messages. This
masks the HDL line in error messages printed to the screen and to
the log files. The messages have the following format:

test.vhd:19: [ERROR] R_552_1: Signal is not
assigned on all branches and may infer a latch

If you combine the -nocode switch with the -full_log switch, Leda
ignores the -nocode switch.

-nocompilemessage Use the -nocompilemessage switch if you don’t want Leda to print
module information during compile phase.

-noecho Use the -noecho switch to suppress warning messages printed
when:

• You check chip-level rules, but you do not specify any top
unit.

• You activate chip-level checks, but no chip-level rules exist.
• Chip-level rules exist within the policy to be checked, but

you do not activate chip-level checks.

Table 17: Common Command-Line Options and Switches (Continued)

Option/Switch Description

June 2006 Synopsys, Inc. 153

Leda User Guide Chapter 6: Using Leda Batch Mode

-nohierdump Use the -nohierdump switch to turn off generation of the hierarchy
browsing database. This speeds up tool performance, but disables
the hierarchy browser in the GUI after a Checker run.

-nolog Use the -nolog switch to stop the Checker from generating log
files.

-nomaxmessages N Use the -nomaxmessages switch if you don’t want Leda to limit
the number of messages per rule (per language). If you want Leda
to report all violations regardless of the number found, use the
-maxmessages N switch.

-nomaxviolations Use the -nomaxviolations switch if you don’t want Leda to limit
the number of violations per rule. The default is 100 violations per
rule. You can also set this to a different number using the
-maxviolations N option.

-nowarning Use the -nowarning switch to suppresses warning messages
generated during compilation and elaboration.

-o LIB [UNIT] Use the -o option to specify the library or unit to be checked. For
example, the command:

% leda -o LIB UNIT -p rmm_rtl_coding_guidelines

checks unit UNIT from library LIB. You must have already
compiled this unit. If no units are specified on the command line,
all units in the library are checked.

-p policy Use the -p option to specify the names of policies to check. If
followed by one or more -r options, Leda checks only the rulesets
specified by the -r options. If there are no -r options, Leda checks
all rulesets. Here are some examples:
% leda -p rmm_rtl_coding_guidelines
% leda -p rmm_rtl_coding_guidelines -r
coding_for_synthesis
% leda -p rmm_rtl_coding_guidelines -p
ieee_rtl_synth_subset
% leda -p rmm_rtl_coding_guidelines -r
coding_for_synthesis
% leda -p ieee_rtl_synth_subset

-project project Use the -project option to specify the name of a project containing
your HDL source files that can be opened in the GUI. Note that the
project must be a simple name, not the full path.
When you use this option, Leda stores information about your user
environment and Leda configuration in a file named project.inf,
instead of leda.inf. For information on .inf files and how to use
them, see “Post-processing Batch Mode Log Files” on page 128.

Table 17: Common Command-Line Options and Switches (Continued)

Option/Switch Description

154 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

-quiet Use the -quiet switch to turn off printing of error messages and log
file entries to STDOUT.

-r ruleset Use the -r option to specify the rulesets to be checked from a given
policy. To find the ruleset names in a given policy, see the
corresponding policy documentation in the Leda Prepackaged
Rules Guides located in the $LEDA_PATH/doc directory. Note
that you must precede every ruleset with a separate -r option.

-sdc The Checker executes SDC checks by default as long as you have
some SDC rules selected in your configuration. You can also use
this switch to run SDC checks only and disable all other types of
checks, regardless of the types of rules you have selected in your
configuration file. See “Using the SDC Checker” on page 133.

-severity severity Use the -severity option to specify the lowest severity for which
you want the Checker to print messages. Messages with a severity
below the specified value are not printed. The allowed values, in
order of importance, are:

• NOTE (default)
• WARNING
• ERROR
• FATAL

For example, if you specify:
-severity ERROR

the Checker only prints messages with a severity of ERROR or
FATAL.

-sort sort_by Use the -sort option to specify how you want rule violations sorted
in the leda.log file. The default sort is by rule. Use sort_by to
specify a different sorting option. The legal values are:

• label

• policy

• severity

• file

• language

• module

• master_id

Note: If you use -sort, you must also specify full_log.

Table 17: Common Command-Line Options and Switches (Continued)

Option/Switch Description

June 2006 Synopsys, Inc. 155

Leda User Guide Chapter 6: Using Leda Batch Mode

-summary Use the -summary option if you want summary information to
appear at the beginning of the leda.log file. Summary information
is already available in the GUI Error Viewer (Info Tab) if you
specify -full_log as part of your batch invocation. The -summary
switch puts the same information at the beginning of your log file.
This way, the log file format you get when running in batch mode
matches the log file format you get in GUI mode.

-test_asynch RST Use the -test_asynch option to specify the test reset signal RST and
indicate that it is active on “1” and has a hold value of “0” during
the scan shift phase. With RTLDRC©, this corresponds to the
following command:

set_signal_type test_asynch RST

-test_asynch_inverted RST Use the -test_asynch_inverted option to specify the test reset
signal RST and specify that it is active on “0” and has a hold value
of “1” during the scan shift phase. With RTLDRC©, this
corresponds to the following command:

set_signal_type test_asynch_inverted RST

-test_clk_falling CLK Use the -test_clk_falling option to specify test clock signal CLK
and specify that the first edge in this clock’s cycle is the falling
edge. With RTLDRC©, this corresponds to the following
command:

create_test_clk CLK -w{N1 N1-N2}

In Leda’s DFT checks, no delays are taken into account. Leda
always assumes that the test clock period is 100 ns and the strobe
point occurs at 95 ns (default RTLDRC© values). Leda also
assumes that all test clock events occur before this strobe point.

-test_clk_rising CLK Use the -test_clk_rising option to specify test clock signal CLK
and specify that the first edge in this clock’s cycle is the rising
edge. With RTLDRC©, this corresponds to the following
command:

create_test_clk CLK -w{N1 N1+N2}

In Leda’s DFT checks, no delays are taken into account. Leda
always assumes that the test clock period is 100 ns and the strobe
point occurs at 95 ns (default RTLDRC© values). Leda also
assumes that all test clock events occur before this strobe point.

+tcl_file script.tcl Use the +tcl_file option to execute a Tcl script that contains Leda
Tcl commands.

Table 17: Common Command-Line Options and Switches (Continued)

Option/Switch Description

156 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

+tcl_rule+file.tcl+procedure Use the +tcl_rule+ option to test a Tcl-based design netlist rule,
where file.tcl contains a procedure named rule_label. Do not
include the “rule”_ prefix for your Tcl procedure when you specify
the procedure name on the command line. For example, if your Tcl
procedure is named rule_B6000, specify the procedure as B6000.

+tcl_shell Use the +tcl_shell switch to make Leda enter Tcl shell mode. To
enable DQL design queries in the Tcl shell, you must elaborate the
design in batch mode or use the elaborate command in the Tcl shell
mode (see “elaborate” on page 283).

-top UNIT Use the -top option to specify the top unit or module of your
design hierarchy. This is required in order to check for chip-level
rule violations.

-translate_directive Use the -translate directive switch if you don’t want HDL source
code that falls between the following Synopsys directives to be
compiled:

• synthesis_off and synthesis_on

• translate_off and translate_on

-upgrade400 Use the -upgrade400 to translate rule deactivation commands
in.leda_select files into equivalent Tcl commands. Don’t use any
other command-line options when you run the translator. For more
information, see“Translating .leda_select Files” on page 106.

-version Prints the current version of the Checker.

-work LIB Use the -work option to specify the name of the library into which
all files will be analyzed. This option is ignored if you do not
specify any files on the command line. You specify the physical
location of the specified library in a file called plibs (see “Using
plibs to Set Library Logical/Physical Mapping” on page 146).
If you do not specify the -work option, Leda analyzes the plibs file
to see if there is a physical library mapped to the logical name
WORK. If not, the library .leda_work is used. If the plibs file
contains no physical location for this library, the Checker creates it
locally.

Table 17: Common Command-Line Options and Switches (Continued)

Option/Switch Description

June 2006 Synopsys, Inc. 157

Leda User Guide Chapter 6: Using Leda Batch Mode

VHDL Command-Line Options
The options that you can use only on VHDL files are described in Table 18.

Table 18: VHDL Command-Line Options and Switches

Option/Switch Description

-files filename Use the -files option to specify that all VHDL files to be analyzed and checked
are listed in the text file filename. If you use this option in conjunction with the
-project option, a #Files or #Dirs clause in the file indicated by the filename
argument must contain the library name.
If you want a file or directory to be treated as a resource library, and therefore
excluded from Leda block-level and chip-level checks, add the nochecklib
argument as shown in the following examples:

#Files <libname> nochecklib

#Dirs <libname> nochecklib

If you don’t specify nochecklib, the default is checklib. See “Example for
-files” at the end of this table.

-lang LANG Use the -lang option to select the mode to use when analyzing code. This option
can take one of the following values for LANG:

• 87—analyzed using VHDL 87 syntax and semantics.
• 87e—analyzed using VHDL 87 syntax and semantics, with some

semantic exceptions.
• 93—analyzed using VHDL 93 syntax and semantics.
• 93e—analyzed using VHDL 93 syntax and semantics, with some

semantic exceptions. This is the default.
For information on semantic exceptions and how to control their use, see
“Writing and Checking HDL Designs” on page 51.

-mk Use the -mk switch to make the Checker automatically deduce the compilation
order for your VHDL source files.

-mkk This switch works alike -mk switch, but continues even if there is a syntax
error.

+nochecklib Use the +nochecklib option on the command line to specify VHDL resource
libraries that you don’t want Leda to check for errors. Leda’s default behavior is
to check all libraries passed in on the command line.
Note that if you use +nochecklib, you must also use the -work option to specify
the name of the library into which all files will be analyzed (see “-work LIB” on
page 114).
The -files and +nochecklib options are mutually exclusive. You cannot use both
options on the same command line. If both options appear, Leda ignores the
+nochecklib option and determines which libraries to check based on the
contents of the file specified by the -file option.

158 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

Example for -files
You can use more than one #Files or #Dirs clause in filename to specify more than one
library, but you cannot specify any library more than once. For example, a filename with
the following contents causes Leda to analyze the specified libraries correctly:

#Files lib1
source/lib1_cell1.vhdl
source/lib1_cell2.vhdl
source/lib1_cell3.vhdl
#Files lib2
source/lib2_cell1.vhdl
source/lib2_cell2.vhdl
#Files lib3
source/lib3_cell1.vhdl

But this next example causes Leda to analyze the files incorrectly:
#Files lib1
source/lib1_cell1.vhdl
#Files lib2
source/lib2_cell1.vhdl
#Files lib3
source/lib3_cell1.vhdl
#Files lib1
source/lib1_cell2.vhdl
#Files lib2
source/lib2_cell2.vhdl
#Files lib1
source/lib1_cell3.vhdl

The highlighted portions of this example are incorrect because the lib1 and lib2 libraries are
declared more than once. If you list the same library more than once and use nochecklib in one of
them, Leda uses the library explicitly declared as nochecklib. If you specify the same library more
than once and use conflicting nochecklib and checklib arguments in them, Leda issues an error
message.

June 2006 Synopsys, Inc. 159

Leda User Guide Chapter 6: Using Leda Batch Mode

Verilog Command-Line Options
The options that you can use only on Verilog files are described in Table 19.

Table 19: Verilog Command-line Options and Switches

Option/Switch Description

-a This is a simulator accelerator switch. It is ignored by Leda.

+checklib+<libname> If libname refers to a directory specified with -y, Leda includes all
modules found in that directory for both block-level and chip-level
checks. For example:
% leda files.v -y /path/to/design/dir1 -y
/path/to/design/dir2 +checklib+/path/to/design/dir2
For this command line, Leda checks all the modules in dir2, but not the
modules in dir1 (see -y library_dir on page 161).
If libname refers to a file specified with -v, Leda includes all modules
found in that file for both block-level and chip-level checks. For
example:
% leda files.v -v lib1.v -v lib2.v +checklib+lib2.v
For this command line, Leda checks all the modules in lib2.v, but not
the modules in lib1.v (see -v library_file on page 161).
Note: For chip-level rules, Leda does not flag errors contained
completely in modules not be checked. But if any trace element of the
error is in a module to be checked, Leda flags the error.

-d This is a simulator decompile switch. It is ignored by Leda.

+define+macro [=val] Use the +define argument to define the macro macro and assign val to it.

-f filename Use the -f option to specify a command file that can list Verilog files and
any other options that you want to specify.

-i filename Use the -i option to specify an interactive file for the simulator. It is
ignored by Leda.

+incdir{+directory} Use the +incdir argument to specify the directories to be searched for
included files.

-k filename Use the -k option to specify a key file for the simulator. It is ignored by
Leda.

160 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

-lang LANG Use the -lang option to select the mode to use when analyzing code.
This option can take one of the following values for LANG:

• 95—analyzed using syntax and semantics specified in theVerilog
LRM.

• 95e—analyzed as Verilog 95, but with some commonly used
semantic exceptions. Emulates analyzers that do not conform to
the Verilog LRM.

For information on semantic exceptions and how to control their use,
see “Writing and Checking HDL Designs” on page 51.

+libext{+.string} Use the +libext argument to specify file extensions for files in library
directories (see option -y). You can only use one libext clause on the
command line. The default file extensions for option -y are .v and .V.

+max_case+<val> Use the +max_case option to specify the maximum width of a case
expression in a case statement. The default value is 8.

+max_casexz+<val> Use the +max_casexz option to specify the maximum width of a case
expression in a casex/casez statement. The default value is 8.

-q Use the -q switch to specify a simulator quiet option. It is ignored by
Leda.

-s Use the -s switch to specify a simulator stop option. It is ignored by
Leda.

+sv Use the +sv switch to make Leda parse and check language compliance
for SystemVerilog.

-sverilog Use the -sverilog switch to make Leda parse and check language
compliance for SystemVerilog. This works the same way as +sv, but is
present for compatibility with the VCS command line.

-t Use the -t switch to specify a simulator trace generation option. It is
ignored by Leda.

-u Use the -u switch to make Verilog analysis case-insensitive. This
changes all characters in identifiers to uppercase.
Note: When you use the -u switch, the Verilog language itself becomes
case-insensitive, but not the mechanism Leda uses to find library
directories and files specified with the -y or -v options or used during
elaboration.

-uselrmsize Forces width of integers to be evaluated to 32 bits as per LRM. Also
added to check and run Tcl commands. This option will handle non-size
constants (integer and ‘b0) as 32 bits width.

Table 19: Verilog Command-line Options and Switches (Continued)

Option/Switch Description

June 2006 Synopsys, Inc. 161

Leda User Guide Chapter 6: Using Leda Batch Mode

-use_netlist_reader Use the -use_netlist_reader option to invoke netlist reader.

-usev2klrmsize Use th -usev2klrmsize switch to strictly apply v2k LRM bit widths.

+v2k Use the +v2k switch to make Leda parse and check language
compliance for supported Verilog 2001 constructs. For information on
current supported constructs, see “Verilog 2001 Support” on page 65.
Note: This is the same switch used with the Synopsys VCS simulator.

-v library_file Use the -v option to specify a library file. The Checker scans each
library file for module definitions and tries to resolve all unresolved
module instances in the Verilog source files.
Note: This option works just like the VCS -v option, except that Leda
does not check modules coming from files specified after -v unless you
also use the +checklib option (see +checklib+<libname> on page 159).

-w Use the -w switch to suppress Checker messages with severities lower
than ERROR.

-x Use the -x switch to specify a simulator vector net expansion option. It
is ignored by Leda.

-y library_dir Use the -y option to specify a library directory that contains Verilog
source files. The Checker scans the files in each library directory for
module declarations and tries to resolve all unresolved module instances
in the Verilog source files. This option work for files containing more
than one module.
Note: This option works just like the VCS -y option, except that Leda
does not check modules coming from files specified after -y unless you
also use the +checklib option (see +checklib+<libname> on page 159).

Table 19: Verilog Command-line Options and Switches (Continued)

Option/Switch Description

162 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

Leda Batch Example Invocations
To see how to use Leda in batch mode, you can use the HDL source files located in
$LEDA_PATH/test/mixed/work/src. In this example, you can analyze these files and
store the results in the same location. This is more important for VHDL files; the VHDL
term “library” is used here to represent this location. The name of the library is
Leda_WORK. You specify the physical location of Leda_WORK in a plibs file (see
“Using plibs to Set Library Logical/Physical Mapping” on page 146). When compiling
the source code, follow these guidelines:

• Compile Verilog code first and compile all Verilog code together. To do this, use
standard Verilog batch options (such as –f and +incdir+). For details on Verilog
batch options, see “Verilog Command-Line Options” on page 159.

• Compile VHDL code in the correct compilation order. Otherwise, it will not
compile successfully. To do this, use standard VHDL batch options (such as -files
and -mk). For details on VHDL batch options, see “VHDL Command-Line
Options” on page 157.

• Make sure that all your working libraries are listed in the project’s plibs file.

You can build the mixed-language example project using the following commands:
% leda -c -work Leda_WORK $LEDA_PATH/test/mixed/src/*.v
% leda -c -work Leda_WORK $LEDA_PATH/test/mixed/src/misc_logic.vhd
% leda -c -work Leda_WORK $LEDA_PATH/test/mixed/src/stage1.vhd

Keep the following points in mind when you build a project:

• The –c switch tells the Checker to perform analysis only and not to check any rules.

• To run chip-level checks, you must indicate the top unit in the design so that the
chip-level Checker can follow connectivity paths from this unit. In this example, the
top unit is the Verilog module named “top.”

• To indicate what rules to check, you use the –p and –r switches. However, in this
example, you are checking the prepackaged policies only and therefore do not need
to use these switches.

• To execute the prepackaged policies with both block-level and chip-level rules on,
type the following:

% leda -o Leda_WORK -top top -full_log

• The –full_log switch tells the Checker to generate a log file named leda.log that you
can later review using the interactive Error Report Viewer in the Checker GUI.

June 2006 Synopsys, Inc. 163

Leda User Guide Chapter 6: Using Leda Batch Mode

• You can also execute block-level checks as the project is being built. To do this,
remove the –c switches from the command lines in the previous examples, and add
the –full-log switch if you want to later analyze the results in the Error Report
Viewer.

• If you want to generate the log file in HTML format, use the -html switch.

Generating Log Files in Batch Mode
When you run a design without creating a project in the batch mode (see command
below):

% leda -top <top_name> *.v -config config.tcl

then, files leda.log and leda.inf are created in the present working directory.

When you create a project in the batch mode by executing command
% leda -top <top_name> *.v -config config.tcl -project leda.pro

then, a directory leda-logs is created in the present working directory. Files leda.log and
leda.inf are created in this directory.

Generating Projects in Batch Mode
You can generate a project in batch mode and read the log file later in the GUI. You can
do this for Verilog-only, VHDL-only, and mixed-language projects. The advantage of
this approach is that Leda can run unattended in batch mode at any time (even during
off-peak hours). You can then use the GUI for viewing the results and making minor
changes. For information on viewing log files in the Checker’s Error Report Viewer, see
“Post-processing Batch Mode Log Files” on page 128.

Verilog-only Projects
Generating Verilog-only projects is straightforward. Just use the –project switch, as
shown in the following example:

% leda -work Leda_WORK $LEDA_PATH/test/mixed/src/*.v -project ver

You can also use the –f switch to pass file information to Leda’s project creation routine.

164 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

VHDL-only Projects
VHDL-only projects are slightly more complicated because you have to be careful about
the compilation order for your source files. VHDL projects also frequently make use of
more than one library. To make this work, you have three different options, as shown in
the following examples:

• Use the -project switch to specify a project name

• Use the -mk switch to make Leda deduce the compilation order

• Use the -files option to pass file information to Leda’s project creation routine

The data file you supply with the -files option allows you to easily specify large projects
on the command line. It also allows you to specify into which library a given file is
compiled, as shown in the following syntax descriptions:

file_contents::={[list_of_files] | [list_of_dirs] | [comments]}

list_of_files ::= #Files [<LIB>]
file_name | comment {file_name | comment}

file_name ::= <File Name>

list_of_dirs ::= #Dirs [<LIB>]
dir_name | comment {dir_name | comment}

dir_name ::= <Directory Name>

comment ::= --<text>

Keep the following points in mind when building VHDL projects in batch mode:

• You can alternate the list_of_files, list_of_dirs, or comment rules throughout the file.

• The keywords Files and Dirs are not case-sensitive.

• If you do not specify any libraries on the command line or in the data file,
.leda_work is assumed by default.

• If you do not specify any library for some or all sections of the data file, but you
specify a library with the –work switch on the command line, this library is assumed
to be the default library.

• If you do not specify any library on the command line, then all sections of the data
file must have an explicit library.

• The library names given in the data file must be the logical names of the libraries.
You can specify physical mappings in the plibs file.

• Separate file names by new lines.

June 2006 Synopsys, Inc. 165

Leda User Guide Chapter 6: Using Leda Batch Mode

• Comments begin with the characters “--” and continue to the end of the line.
Comments can appear anywhere in the file, and stop at the end of the current line (as
in VHDL).

For example, the following file contents indicate that all files go into a directory called
Leda_WORK:

#Files Leda_WORK
$LEDA_PATH/test/mixed/src/misc_logic.vhd
$LEDA_PATH/test/mixed/src/stage1_vhd.vhd

Or, you could specify:
#Dirs Leda_WORK
$LEDA_PATH/test/mixed/src

The batch syntax is then:
% leda -files f1.dat -project vhd

Or, if you’re not sure of the compilation order, you can specify:
% leda -files f1.dat -project vhd -mk

Mixed-Language Projects
You can create a mixed VHDL/Verilog project by combining the information in the
previous sections. For example, the following command line creates a mixed VHDL/
Verilog project:

% leda -work Leda_WORK $LEDA_PATH/test/mixed/src/*.v -files f1.dat \
-mk -project mixed

166 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

Checker Batch Mode Results
After you run the Checker in batch mode, Leda returns a status, creates a log file of your
results, and records the environment used for that run of the Checker, as explained in the
following sections:

• “Checker Return Status” on page 166

• “Viewing Checker Results” on page 167

• “Checking the Environment” on page 167

Checker Return Status
When the Checker terminates, it returns a completion status in the $status shell variable,
as shown in Table 20.

Table 20: Checker Return Status

Value of $status Meaning

0 Everything is OK or the maximum severity of rule violations is
NOTE.

1 There was an ERROR in the HDL analysis or the Checker exited
incorrectly.

2 The Checker detected rule violations and the maximum severity of
rule violations is WARNING.

3 The Checker detected rule violations and the maximum severity of
rule violations is ERROR.

4 The Checker detected rule violations and the maximum severity of
rule violations is FATAL.

5 Your Leda software license is invalid or not available.

June 2006 Synopsys, Inc. 167

Leda User Guide Chapter 6: Using Leda Batch Mode

Viewing Checker Results
For information on using the Checker GUI to view results captured in the leda.log file,
see “Post-processing Batch Mode Log Files” on page 128.

Checking the Environment
After you run the Leda Checker in batch mode using the -full_log switch, Leda creates a
text file named leda.inf in the current working directory that captures information about
the environment that Leda referenced for the check, including:

• Command-line used to invoke the Checker

• Settings for environment variables

• Configuration files used

• Policy versions used and full paths to their locations

You can use this file to make sure your results were based on the environment and
configuration that you were expecting. For more information, see “Post-processing
Batch Mode Log Files” on page 128.

168 Synopsys, Inc. June 2006

Chapter 6: Using Leda Batch Mode Leda User Guide

June 2006 Synopsys, Inc. 169

Leda User Guide Chapter 7: Using Leda GUI Mode

7
Using Leda GUI Mode

Introduction
This chapter explains what you can do using each of the menus and special features
available from the Leda GUI, in the following major sections:

• “Invoking the Checker/Specifier GUI” on page 170

• “Checking Your Environment” on page 171

• “Selecting a Text Editor” on page 172

• “The File Menu” on page 173

• “The Project Menu” on page 175

• “The Check Menu” on page 176

• “The Report Menu” on page 177

• “The View Menu” on page 178

• “The Window Menu” on page 178

• “The Help Menu” on page 178

• “Managing Source Files From the GUI” on page 181

• “Managing Library Units From the GUI” on page 184

170 Synopsys, Inc. June 2006

Chapter 7: Using Leda GUI Mode Leda User Guide

Invoking the Checker/Specifier GUI
First, set up your environment, as described in the section on “Configuring the Checker”
in the Leda Installation Guide. Then, invoke the Checker as shown in the following
example:

% $LEDA_PATH/bin/leda &

This brings up the Checker main window (see Figure 46). All the menus and functions
in the Checker tool are also available from the Specifier tool. To invoke the Specifier
GUI, use the following command:

% $LEDA_PATH/bin/leda -specifier &

Note
The Specifier and Checker GUIs are almost identical. The only difference is
that the Specifier has a Policy Manager window (Check > Configure, then
Tool > Policy Manager) that is not present in the Checker tool. You use the
Policy Manager window to compile new rules for the Checker. You must
have a Specifier license to run the Specifier tool.

Figure 46: Leda Checker Main Window

June 2006 Synopsys, Inc. 171

Leda User Guide Chapter 7: Using Leda GUI Mode

Checking Your Environment
You can check the environment that Leda is referencing at any time after running the
Leda Checker tool, either from the GUI or using the -full_log batch mode switch. This
can be useful if you’re not sure which configuration file you are using for a project, for
example, because you can set up different projects to use different configurations for the
prepackaged rules, as explained in “Configuring the Rule Wizard” on page 73. You may
also want to check the versions of the installed policies you are using, your settings for
the various Leda configuration files, or the environment variables that Leda is currently
using.

To check your environment, click on the Info Report tab on the right side of the main
window. This displays the information that Leda is currently referencing, as shown in
Figure 47. If you don’t see an Info Report on your display, this means that you are
viewing a log file generated with a version of Leda prior to 3.0.

Figure 47: Leda Info Report Tab Display

For information on setting Leda environment variables, see “Leda Environment
Variables” on page 317.

172 Synopsys, Inc. June 2006

Chapter 7: Using Leda GUI Mode Leda User Guide

When you run the command-line Checker on a project and use the -full_log switch,
Leda stores the information you see in the Info Report tab in a text file typically named
leda.inf in the same directory as the Checker log files, which is usually the current
working directory. For more information on the Info Report, see “Post-processing Batch
Mode Log Files” on page 128.

Selecting a Text Editor
Leda comes with a default text editor that you can use to view and edit HDL source files
in your Leda projects right from the Leda GUI. If you would rather use another popular
text editor like Vi or XEmacs when you work with Leda, follow these steps:

1. Choose File > Preferences > Source Settings from the Specifier or Checker main
window. This brings up the Application Preferences window. Choose Editor from
the list on the left side of the window. The display changes to a window you can use
to select a text editor other than the default Leda editor (see Figure 48).

Figure 48: Set Text Editor Window

2. To select an editor, click Leda editor, Vi, or XEmacs in the selection pane. This
changes the values displayed in the Default Editor, Command, and Parameters field
at the top of the window to the editor you selected.

3. You can change the values in the Command and Parameters fields as needed, The
defaults should work for most uses. If you want to change these values, first click on
the editor you want in the selection pane, and then click the Duplicate button. This
adds a copy of the selected editor to the selection pane.

June 2006 Synopsys, Inc. 173

Leda User Guide Chapter 7: Using Leda GUI Mode

4. With your copy of the editor selected, change the command and parameters as
needed, just like you would in the UNIX shell. If your chosen editor is not in your
$path, make sure the Command field reflects the full path to the chosen executable
(for example, /usr/local/bin/xemacs).

5. When you are done selecting your editor, click on the OK button. This saves your
selection and dismisses the window. The next time you open an HDL source file
from the GUI, Leda uses the editor you selected.

The File Menu
The File menu contains the choices described in Table 21.

Table 21: File Menu Choices

Menu Item Use

New Brings up the New File dialog box, where you can specify a
new file to open in the text editor. You can edit the file and
recompile it if the file is a recognized HDL source file.

Open Brings up the Open File dialog box, where you can specify
an existing file to open in a text editor.

Recent Files Displays files that you have used recently. Click on any of
the displayed files to bring up a text editor on the file.

Preferences Brings up the Application Preferences window, where you
can set your preferences for:
Checker
Select the language (Verilog or VHDL), and checking
mode (block-level, chip-level, netlist-checks). See “Setting
& Saving Checker Preferences” on page 108.
Report
Select default sorting options for the Error Viewer.
Editor
Select vi, Xemacs, or the default Leda text editor.
Font
Select a font other than the default for the GUI display and
reports.
Schematic
Select fill patterns and colors other than the defaults for the
Path Viewer and Clock and Reset Tree Browsers.

Restore Last Session
Preferences

Restores your Preferences to the way they were set the last
time you used the GUI.

174 Synopsys, Inc. June 2006

Chapter 7: Using Leda GUI Mode Leda User Guide

Restore Default Preferences Restores your Preferences to the default settings.

Save Preferences Saves your preferences in a $HOME/
.synopsys_leda_prefs.tcl file that is used the next time you
invoke the GUI (if the file exists).

AutoSave Select this toggle switch if you want Leda to automatically
save the Preferences you specify.

Quit Exits the application.

Table 21: File Menu Choices (Continued)

Menu Item Use

June 2006 Synopsys, Inc. 175

Leda User Guide Chapter 7: Using Leda GUI Mode

The Project Menu
The Project menu contains the choices described in Table 22.

Table 22: Project Menu Choices

Menu Item Use

New Brings up the Project Creation Wizard window, which you can use to
create a project that organizes your HDL source files. The Wizard
takes you through the process window by window. Click the Next
button on each window when you finish specifying your compiler
options, libraries, and source files.
After you completely specify your project, Leda creates a
project_name-libs directory which contains a shell script named
LVS_makelibs used to build HDL libraries, a Makefile to compile all
source files into the correct library, and all libraries.

Open Brings up the Open a Project window, which you can use to open an
existing project. Navigate to the full path and name of an existing
project, and click on the Open button. Leda locks this project
automatically, and unlocks it again when you close it. However, if
Leda exits abnormally while you have a project open, you get a
message asking if the project should be unlocked.

Edit Brings up the Project Update Wizard, which you can use to update an
existing project by specifying new compiler options, libraries, or
source files. The Wizard takes you through the process window by
window. Click the Next button on each window when you finish
making your changes.

Save Saves the current project and all preferences that you specified. Leda
prints save messages in the transcript window at the bottom of the
display.

Close Closes the current project. In most cases, it is best to save the current
project before closing it.

Delete Deletes the current project.

Build VHDL only. Use this option when you have added a new VHDL
source file or changed the hierarchy in the current VHDL project.
Leda compiles all source files that contain design units in the current
project’s working libraries which you have modified or recompiled
since the date of the last compilation.

Build All VHDL only. Use this option when you have added a new VHDL
source file or changed the hierarchy in the current VHDL project.
Leda compiles all source files that contain design units in the current
project’s working libraries, regardless of when they were last modified
or recompiled.

176 Synopsys, Inc. June 2006

Chapter 7: Using Leda GUI Mode Leda User Guide

The Check Menu
The Check menu contains the choices described in Table 23.

Recent Projects Displays a list of recently visited projects. Select the project you want
to load from the list.

Table 23: Check Menu Choices

Menu Item Use

Configure Brings up the Leda Rule Wizard, which you can
use to configure and select prepackaged and
custom rules before checking your designs.

Load configuration Brings up a pull-down menu where you can
select a custom rule configuration or one of the
four prebuilt rule configurations (see “Using
Prebuilt Configurations” on page 99).

Run Runs the Checker on the rules that you have
selected, and prints messages in the transcript
window at the bottom of the display. If
necessary, presents a Get top module/design
entity window, which you can use to specify the
top-level unit in your design, and create test/
reset clocks. Upon completion, the Checker
displays results from the check in the Error
Viewer on the right side of the main window.

Table 22: Project Menu Choices (Continued)

Menu Item Use

June 2006 Synopsys, Inc. 177

Leda User Guide Chapter 7: Using Leda GUI Mode

The Report Menu
The Report menu contains the choices described in Table 24.

Table 24: Report Menu Choices

Menu Item Use

Open Brings up the Select Log File window, which
you can use to open a log file created by a
previous run of the Checker, either in GUI or
command-line mode. When the log file opens,
the results for that check are displayed in the
Error Viewer.

Save Brings up the Save Report File As window,
which you can use to save the results of the
current Error Report in a log file for viewing
later.

Save as ... Brings up the Save Report File As window,
which you can use to save the results of the
current Error Report in a different location or
with a different name for viewing later.

Save as HTML ... Brings up the Save HTML Report File As
window, which you can use to save the results
of the current Error Report in HTML format
and launch an HTML browser on the file.

Print Prints the current Error Report.

Close Closes the current Error Report.

Sort by ... Brings up a menu that you can use to change
the way your error messages are sorted in the
Error Viewer. Available sorting options include
Policy, Label, Severity, File, Module/unit,
Language, and Master Rule.

Filter by ... Brings up a menu that you can use to change
the way your error messages are filtered in the
Error Viewer. Available filtering options
include Policy, Label, Severity, File, Module/
unit, Language, and Master Rule. When you
select one of these options, a window comes up
that you can use to specify a regular expression
for filtering your results for that item.

Summary Toggles the Error Viewer summary report on
and off.

178 Synopsys, Inc. June 2006

Chapter 7: Using Leda GUI Mode Leda User Guide

The View Menu
The View menu contains tools that you can use to zoom in or pan around in the Path
Viewer, and toggle the presence of the status window at the bottom of the display on or
off. Turning this off gives you a little more real estate. Most of the functions in the View
menu are also available using the toolbar icons.

The Window Menu
The Window menu contains functions that you can use to change the arrangement of the
display windows in the Leda. You can tile the windows vertically or horizontally, or
cascade them. You can also dock the active window on the top, bottom, right or left, or
undock it.

The Help Menu
The Help menu provides access to the Leda documentation in PDF format (see
Table 25).

Table 25: Help Menu Choices

Menu Item Use

Leda Document Navigator Brings up the Acrobat Reader on this PDF file, which provides an
overview of the entire Leda documentation set, with hyperlinks to
each manual. If you are not familiar with the Leda documentation,
this is a good place to start.

Leda Installation Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed instructions for installing and configuring the Leda
software.

Leda Release Notes Brings up the Acrobat Reader on this PDF file, which provides
information about what’s new and fixed bugs in the latest release
of Leda.

Leda C Interface Guide Brings up the Acrobat Reader on this PDF file, which documents
the C API for writing custom netlist checker rules in C or C++.

Leda Tcl Interface Guide Brings up the Acrobat Reader on this PDF file, which documents
the Tcl API for writing custom netlist checker rules in Tcl.

Leda Rule Specifier Tutorial Brings up the Acrobat Reader on this PDF file, which provides a
hands-on tutorial for how to write new rules for Leda using the
VRSL and VeRSL rule specification languages.

June 2006 Synopsys, Inc. 179

Leda User Guide Chapter 7: Using Leda GUI Mode

VRSL Reference Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information on VRSL, which you use to write
new rules for VHDL designs.

VeRSL Reference Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information on VeRSL, which you use to write
new rules for Verilog designs.

Leda User Guide Brings up the Acrobat Reader on this PDF file (this manual),
which provides comprehensive procedures for how to use Leda.

Leda General Coding Rules
Guide

Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules in the
Leda policy.

Leda RMM Coding Rules
Guide

Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules in the
RMM policy.

Leda IEEE Verilog Rules
Guide

Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules in the
IEEE Verilog policy.

Leda IEEE VHDL Rules
Guide

Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the IEEE VHDL policy.

Leda Design Compiler
Rules Guide

Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the Design Compiler policy.

Leda VCS Rules Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the VCS policy.

Leda Scirocco Rules Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the Scirocco policy.

Leda DesignWare Rules
Guide

Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the DesignWare policy.

Leda Formality Rules Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the Formality policy.

Table 25: Help Menu Choices (Continued)

Menu Item Use

180 Synopsys, Inc. June 2006

Chapter 7: Using Leda GUI Mode Leda User Guide

Leda DFT Rules Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the DFT policy.

Leda Verilint Rules Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the Verilint policy.

Leda STARC DSG Verilog
Rules Guide

Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the STARC DSG Verilog policy.

Leda STARC DSG VHDL
Rules Guide

Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the STARC DSG VHDL policy.

Leda Design Rules Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the Design policy.

Leda Constraints Rules
Guide

Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the Constraints policy.

Leda Xilinx Rules Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the Xilinx policy.

Leda Power Rules Guide Brings up the Acrobat Reader on this PDF file, which provides
detailed reference information for the prepackaged rules that come
in the Power policy.

Leda on the Web Launches a browser session and takes you to the Leda product
page on the Synopsys Web site.

About Leda Brings up a splash page that displays the version of Leda that you
are using.

Table 25: Help Menu Choices (Continued)

Menu Item Use

June 2006 Synopsys, Inc. 181

Leda User Guide Chapter 7: Using Leda GUI Mode

Managing Source Files From the GUI
The Files tab shown in Figure 49 appears on the left side of the main window.

Figure 49: Source File Manager Window

The Source File Manager represents the HDL source files loaded for your project in a
graphical tree with four levels, as explained in Table 26.

You can expand or contract the hierarchical display by clicking on the (+) or (-) box
icons. Note that each level in the hierarchy has a different icon associated with it. Right
click on any file in the display and choose “Edit the file” from the popup menu to open a
text editor on the file.

Table 26: Source File Levels in Display

Level Description

Level 1 Shows the root level of the current project.

Level 2 Shows the working libraries of the current project.

Level 3 Shows the relative names of the source files in each working library.

Level 4 Shows the design units present in the source files.

Level 1

Level 2

Level 3

Level 4

182 Synopsys, Inc. June 2006

Chapter 7: Using Leda GUI Mode Leda User Guide

Using Pop-up Menus in the Files Tab
When you right-click on icons at different levels of the hierarchy in the Files tab from
the main window, special pop-up menus appear that are geared for the different levels in
the hierarchy, as explained in the following subsections, from top to bottom in the
project source file hierarchy:

• “Project Pop-up Menu” on page 182

• “Library Pop-up Menu” on page 182

• “Source File Pop-up Menu” on page 183

• “Unit Pop-up Menu” on page 183

Project Pop-up Menu
To activate the Project pop-up menu, hold down the right mouse button on the Source
Files icon or label. This makes the choices shown in Table 27 available.

Library Pop-up Menu
To activate the Library pop-up menu, hold down the right mouse button on a Library
icon or label. This makes the choices shown in Table 28 available.

Table 27: Project Pop-up Menu Choices

Menu Item Use

Add a library ... Adds a selected library to the project as a working library.

Build the project Compiles all project source files in their order of appearance.

Save the project Saves the current project’s working libraries, resource libraries,
and source files.

Close all libraries Closes all opened levels except the project. You can do the same
thing by double-clicking on the project icon or name.

Table 28: Library Pop-up Menu Choices

Menu Item Use

Add files ... Brings up the Add Files window, which you can use to add
source files to the corresponding library.

Build the library Compiles all source files in the library in their order of
appearance.

Remove the library from the project Removes the selected library from the current project.

June 2006 Synopsys, Inc. 183

Leda User Guide Chapter 7: Using Leda GUI Mode

Source File Pop-up Menu
To activate the Source File pop-up menu, hold down the right mouse button on a source
file icon or name. This makes the choices shown in Table 29 available.

Unit Pop-up Menu
To activate the Unit pop-up menu, hold down the right mouse button on a unit or name.
This makes the choices shown in Table 30 available.

Remove the library from the disk Removes the selected library from the current project and
from the disk.

Table 29: Source File Pop-up Menu

Menu Item Use

Edit the file Brings up a text editor on the selected HDL source file.

Compile the file Compiles the selected source file into the corresponding
library.

Remove the file from the project Removes the selected source file from the project.

Remove the file from the disk Removes the selected source file from the corresponding
library and from the disk.

Table 30: Unit Pop-up Menu

Menu Item Use

Edit the unit Edits the source file of the selected design unit at the beginning of
its description.

Compile the file Compiles the source file containing the selected design unit into
the corresponding library.

Table 28: Library Pop-up Menu Choices (Continued)

Menu Item Use

184 Synopsys, Inc. June 2006

Chapter 7: Using Leda GUI Mode Leda User Guide

Managing Library Units From the GUI
The Modules/Units tab shown in Figure 50 appears in the main window when you select
that tab.

Figure 50: Library Unit Manager Window

The Library Unit Manager represents the HDL source files loaded for your project in a
graphical tree with five levels, as explained in Table 31.

Table 31: Library Unit Levels in Display

Level Description

Level 1 Shows the current project, at the root of the hierarchy.

Level 2 Shows the working libraries of the current project in upper-case
lettering.

Level 3 Shows the primary kinds of units in each working library,

Level 4 Shows the primary units in each working library. Leda determines this
by referencing the corresponding library.

Level 5 Shows the secondary units in each working library. These units directly
depend on their primary units.

Level 1

Level 2

Level 3

Level 4

Level 5

June 2006 Synopsys, Inc. 185

Leda User Guide Chapter 7: Using Leda GUI Mode

You can expand or contract the hierarchical display by clicking on the (+) or (-) box
icons. Note that each level in the hierarchy has a different icon associated with it. Right
click on any file in the display and choose “Edit the file” from the pop-up menu to open
a text editor on the file.

Using Pop-up Menus in the Modules/Units Tab
When you right-click on icons at different levels of the hierarchy in the Modules/Units
tab from the main window, special pop-up menus appear that are geared for the different
levels in the hierarchy, as explained in the following subsections, from top to bottom in
the library unit hierarchy:

• “Project Pop-up Menu” on page 185

• “Library Pop-up Menu” on page 186

• “Unit Pop-up Menu” on page 186

Project Pop-up Menu
To activate the Project pop-up menu, hold down the right mouse button on a Modules/
Units icon or label. This makes the choices shown in Table 32 available.

Table 32: Project Pop-up Menu Choices

Menu Item Use

Execute Checkers Executes the Checker on all design units in the
selected library.

Show Errors on project_name for > Brings up another pop-up menu that lists the
names of prepackaged policies. You can use
these choices to filter the results in the Error
Viewer accordingly.

Refresh View Refreshes the view.

Close all Units Collapses the hierarchical display so that units
are not shown.

186 Synopsys, Inc. June 2006

Chapter 7: Using Leda GUI Mode Leda User Guide

Library Pop-up Menu
To activate the Library pop-up menu, hold down the right mouse button on a library icon
or label. This makes the choices shown in Table 33 available.

Unit Pop-up Menu
To activate the Unit pop-up menu, hold down the right mouse button on a unit icon or
label. This brings up a pop-up menu that you can use to Edit the file.

Generating Log Files in GUI Mode
When you create a project in the GUI mode, a directory leda-logs is created in the
present working directory. Files leda.log and leda.inf are created in this directory.

Table 33: Library Pop-up Menu Choices

Menu Item Use

Add files ... Brings up a window that you can use to add
files to the project.

Build the library Makes Leda compile all the files in the selected
library.

Remove the library from the project Removes the selected library from the current
project.

Remove the library from the disk Removes the selected library from the current
project and from the disk.

June 2006 Synopsys, Inc. 187

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

8
Using Leda Tcl Shell Mode

Introduction
This chapter provides reference information for the built-in Tcl commands implemented
in Leda. You can use these Tcl commands to configure rules, manage projects, and
control your Leda Checker runs (see “Built-in Tcl Commands” on page 189).

But first, here’s an overview of how to get started in the Tcl shell in the following
sections:

• “Invoking Leda in Tcl shell Mode” on page 187

• “Enabling Netlist Checks” on page 188

• “Changing Leda Modes” on page 188

• “Sourcing a Tcl Script in Leda” on page 188

• “Collections” on page 190

• “Regular Expressions” on page 192

Invoking Leda in Tcl shell Mode
To invoke Leda in Tcl shell mode:
% leda +tcl_shell [-project project_name]

% leda +tcl_shell batch_command_line_args/options [-project project_name]

The Leda Tcl commands work from the Tcl console at the bottom of the GUI window or
from the Tcl prompt in the shell when you are not using the GUI. In both cases, the Tcl
prompt looks like this:

leda>

188 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

In Tcl shell mode, Leda saves the Tcl commands from your setup and configuration files
in a leda_command.log file in the current working directory. This file is overwritten for
each new session.

Enabling Netlist Checks
In addition to the built-in Tcl commands documented in this chapter, you have access to
an extensive set of Tcl Design Query Language (DQL) functions that you can use to
interactively query your elaborated design database in Tcl shell mode. These are the
same functions that you can use to develop your own custom netlist-checking rules. For
complete reference information on the Tcl DQL API, see the Leda Tcl Interface Guide.

To enable the DQL with an existing project:
% leda +tcl_shell

leda> project_open existing_project_name

leda> elaborate

If you don’t want to open an existing project, you can also enable the DQL by reading in
some HDL source files, specifying the top-level unit, and elaborating the design as
follows:

% leda +tcl_shell (to start the tool)

leda> read_verilog netlist.v (or a set of files)

leda> current_design name_of_top_level_unit

leda> elaborate

Changing Leda Modes
For information on how to switch back and forth between GUI mode, Tcl shell mode,
and batch mode to perform different tasks with Leda, see “Using Leda in Batch, GUI,
and Tcl Shell Modes” on page 30.

Sourcing a Tcl Script in Leda
You can write a Tcl script that uses the commands documented in this chapter and
source them in the Leda environment using the +tcl_file option:
% leda +tcl_file script.tcl

June 2006 Synopsys, Inc. 189

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Built-in Tcl Commands
The built-in Tcl commands provide alternative ways to access tool functionality that is
also available using the Leda GUI and the batch mode Checker. The built-in Tcl
commands fall into three major categories:

• Rule commands that you can use to manage the rules that you use to check your
HDL design (see “Rule Tcl Command Reference” on page 197).

• Project commands that you can use to manage your Leda projects (see “Project Tcl
Command Reference” on page 253).

• Checker commands that you can use to control your runs with the Leda Checker
(see “Checker Tcl Command Reference” on page 271).

Getting Help on Leda Tcl Commands
You can get help on any of the commands documented in this section using the help -v
option from the Tcl prompt, as follows:

leda> help -v leda_tcl_command

For example, to get help on the rule_manage_policy command:
leda> help -v rule_manage_policy
rule_manage_policy # Create a policy

 -policy <policy_name> (Give the policy name)
 [-format <language_name>]
 (Set the language name:
 Values: verilog, vhdl)
 [-ruleset <name>] (Give the ruleset name)
 [-templateset <name>] (Give the templateset name)
 command (Execute the command:
 Values: create, delete, compile)
 [file_s] (List of rule files to be compiled)

190 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

Collections
A collection is a group of objects exported to Tcl user interface. A set of commands to
create and to manipulate collections is provided as an integral part of the user interface.
The collection commands are divided into two categories:

• Commands that create collections of objects for use by another command,

• Commands that query objects for your viewing.

The result of a command that creates a collection is a Tcl object that can be passed along
to another command. For a query command, although the visible output looks like a list
of objects (a list of object names is displayed), the result of a query command is an
empty string. An empty string "" is equivalent to an empty collection, which is a
collection with zero elements.

Leda collections can contain the following objects:

• Cell

• Port

• Pin

• Net

• Power_domain

Each object is defined by its type (cell, port, pin, net or power_domain) and its name
(string displayed to the user interface).

The following table describes the attributes of each of the objects that Leda supports:

Table 34: Attributes of Objects supported by Collection

Object Attribute Type Description

Cell base_name string The leaf name of a cell. For example, the
base_name of cell U1.U2.U3 is U3.

full_name string The complete name of a cell. For example,
the full name of cell U3 within cell U2
within cell U1 is U1.U2.U3. The
full_name attribute is not affected by
current_instance.

object_class string The class of the object. This is a constant
equal to cell.

June 2006 Synopsys, Inc. 191

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Net base_name string The leaf name of a net. For example, the
base name of net i1.i1z1 is i1z1. You
cannot set this attribute.

full_name string The complete name of a net. For example,
the full_name of net i1z1 within cell i1 is
i1.i1z1. The full_name attribute is not
affected by current instance. The
full_name attribute is read-only.

object_class string The class of the object. This is a constant,
equal to net.

Pin base_name string The leaf name of a pin. For example, the
base name of pin U1.U2.Z is Z. You
cannot set this attribute.

full_name string The complete name of a pin to the top of
the hierarchy. For example, the full name
of pin Z on cell U2 within cell U1 is
U1.U2.Z. The setting of the current
instance has no effect on the full name of a
pin.

object_class string The class of the object. This is a constant,
equal to pin.

Port base_name string The leaf name of a port. For example, the
base name of port i1.i1z1 is i1z1. You
cannot set this attribute.

full_name string The complete name of a port to the top of
the hierarchy. For example, the full name
of port Z on cell U2 within cell U1 is
U1.U2.Z. The setting of the current
instance has no effect on the full name of a
port.

object_class string The class of the object. This is a constant,
equal to port.

Power_domain base_name string The name of a power domain.

full_name string It is same as the base name.

object_class string The class of the object. This is a constant,
equal to power_domain.

Table 34: Attributes of Objects supported by Collection

Object Attribute Type Description

192 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

Leda provides Tcl commands to create and manipulate collections. For more
information, see “Rule Tcl Command Reference” on page 197.

Current Limitation
Leda collections cannot contain the following objects:

• Lib

• Design

The following table list the commands that are not supported by Leda, but when
executed by Leda will not result in an error or warning.

Regular Expressions
You can use simple wildcard characters like * and ? and also complete regular
expressions with the collection.

For example:
leda> set gc [get_cells -regexp {i(1|2)_.*}]

Table 35:

all_connected Used to create a collection of objects connected to
another.

all_fanin Used to create a collection of pins/ports or cells in the
fanin of specified sinks.

all_fanout Used to create a collection of pins/ports or cells in the
fanout of specified sources.

get_designs Used to create a collection of designs.

get_lib_cells Used to create a collection of library cells.

get_lib_pins Used to create a collection of library cell pins.

get_libs Used to create a collection of libraries.

get_timing_paths Used to create a collection of timing paths.

June 2006 Synopsys, Inc. 193

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

The -regexp option tells Leda to view the patterns argument as a regular expression. In
addition, the pattern matching operators in the filter expression (=~ and !~) also use
regular expressions. The following commands, illustrates the basic regular expressions
(both commands do the same thing):

leda> get_cells blk* -filter "base_name =~ AN*"

leda> get_cells -regexp {blk.*} -filter "base_name =~ AN*"

You need to use the -nocase option with the -regexp option to perform a case-insensitive
search in Leda.

Using Regular Expressions with Hierarchy
Using the -regexp option along with the -hierarchical option is different from using a
wildcard pattern with the -hierarchical option. The hierarchical searches with regular
expressions are always matched with the full name of the objects. The behavior of
hierarchical searches with regular expressions are as follows:

• Using -regexp option alone matches the leaf names in the current instance. For
example:
leda> get_cells -regexp i1*.

• Using -regexp option with -hierarchical option matches full names, relative to the
current instance, for each object found at or below the current instance. This is
independent of the existence of hierarchy separators in the pattern. For example, to
create a collection of i1.i2.n1, i1.i21.n1, i1.i2.i3.n1, etc., the command should be as
follows:
leda> get_cells -regexp i1/i2.*/n1

• Using -regexp does not provide a direct method to match leaf names at each level of
the hierarchy. However, you can emulate a method of matching leaf names by using
filters. For example, you can use -regexp to do the same as the following command:
leda> get_cells n1 -hierarchical

To do this, use the base_name attribute, that is the leaf name of the cell. For
example:
leda> get_cells -regexp -hierarchical “.*” -filter {base_name == n1}

Anchoring Regular Expressions
By default, Leda automatically anchors regular expression patterns. For example, the
pattern blk.* is considered the same as ^blk.*$, that is usually the intended behavior.

194 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

If you want a less restricted matching style, prefix and suffix the pattern with .* to
unanchor the pattern (that is, not do an exact match). For example, to get any cells that
contain U1:

leda> get_cells -regexp {.*U1.*}

The above command matches U1, U11, U1A, U1_23, plus ZU1, ZZU1, hello_U1, etc.,

Using Regular Expressions with Busses
You should be careful when using a regular expression to match buses, because the bus
characters “(” and “)” are part of the command language. In addition, the usage varies
slightly depending on whether the command argument is a string or a list.

For a string command argument, the following example shows the correct form. The
expression argument to filter_collection is a string.

leda> filter_collection -regexp [get_ports *] {full_name =~ a\([0-1]\)}

The above regular expression matches ports a(0) and a(1). A single backslash (\) must
precede the bracket.

For a list command argument, the syntax depends on how you specify the list. Consider
the following example, which uses the get_ports command. The “patterns” argument to
get_ports is a list.

leda> get_ports -regexp [list {a\([0-1]\)}]

leda> get_ports -regexp {{a\([0-1]\)}}

These two commands are equivalent. Proper list forms require single backslash quoting
“\”, just like string arguments. It is recommended that you use a properly formatted list
for a list argument, especially in this situation. However, when you pass a single string
into the “patterns” argument, double backslash quoting “\\” is required. For example:

leda> get_ports -regexp {a\\([0-1]\\)}

The double backslash is required because the promotion of the string to a list consumes
one of the backslashes.

Filter Expressions
You can filter collections by using the -filter option with the primary commands that
create collections. You can also use the filter_collection command.

June 2006 Synopsys, Inc. 195

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Using the -filter Option
Many commands that create collections accept a -filter option that specifies a filter
expression. A filter expression is a string composed of a series of logical expressions
describing a set of constraints you want to place on a collection.

Each sub expression of a filter expression is a relation contrasting an attribute name
(such as area or direction) with a value (such as 43 or input), by means of an operator
(such as == or !=).

The following command gets the cells in U1 that have an area no greater than 12 or
reference a design (or library cell) named AN2P, AO2P, etc. The command then assigns
the collection to the cells variable is as follows:

leda> set Cells [get_cells "*" -filter {full_name =~ U* || \
 base_name !~ "A*P"}]

The filter language supports the following logical operators:

• AND or & & - Logical AND (case insensitive)

• OR or | | - Logical OR (case insensitive)

To enforce the evaluation order, you need to group the logical expressions with
parentheses. Otherwise, Leda evaluates expression from left to right.

The filter language supports the following relational operators:

• Equal (==)

• Not Equal (!=)

• Greater than (>)

• Less than (<)

• Greater than or equal to (>=)

• Less than or equal to (=<)

• Matches pattern (~=)

• Does not matches pattern (!~)

In the following filter expression,
{full_name =~ U* || base_name !~ "A*P"}

full_name is an attribute (or identifier), the operator =~ is a relational operator, U* is a
value, and the operator || is the logical OR operator.

The filter language also supports the following existence operators:

• defined

196 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

• undefined

An existence operator determines if an attribute is defined for an object or not. For
example:

sense == defined(sense)

The right side of a relation can consist of a string or a numeric literal. You do not need to
enclose strings in quotation marks. This method is useful because a filter expression is
usually the value for an argument, and the entire expression is enclosed in quotation
marks.

The following command illustrates that, you need not enclose the word in with
quotation marks.

leda> set port [get_ports * -filter {full_name =~ A/B/*}]

However, if an expression contains characters that are part of the filter language syntax,
you must use curly braces to enclose the expression and double quotation marks to
enclose string operands. Since parantheses are part of the filter language, they are
double quoted in the following example and the complete expression is grouped in curly
braces:

leda > set x [filter_collection $ports {base_name =~ "D(*)"}

June 2006 Synopsys, Inc. 197

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Rule Tcl Command Reference
Following is command reference information for the built-in Tcl commands that you can
use to manage the rules that run against your HDL design files. To see the help for all
rule_* commands implemented in Leda, use the help -v switch from the Tcl prompt in
the Tcl console at the bottom of the GUI or in the Tcl shell when you are not running the
GUI:

leda> help -v rule_*

Attention
Options shaded in grey color are ignored by Leda .

is_64bit
Use the is_64bit command to check if the operating system that you are currently
working is 32/64bit.

Syntax
is_64bit

This command returns 1 if the operating system is 64-bit.

add_to_collection
Use the add_to_collection command to add objects to a collection. The result is a new
collection.

Syntax
add_to_collection [-unique] collection1 object_spec

Arguments
-unique Removes duplicates from the result.

collection1 Base collection.

object_spec Objects to add.

all_clocks
Use the all_clocks command to create a collection of all clocks of a design.

198 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

Syntax
all_clocks

all_inputs
Use the all_inputs command to create a collection of all input ports of a design.

Syntax
all_inputs

all_instances
Use the all_instances command to create a collection of all instances of a design.

Syntax
all_instances

all_outputs
Use the all_outputs command to create a collection of all output ports of a design.

Syntax
all_outputs

all_registers
Use the all_registers command to create a collection of all register cells or pins.output
ports of a design.

Syntax
all_registers [-no_hierarchy]

Arguments
-no_hierarchy Limits only to the current level of hierarchy

append_to_collection
Use the append_to_collection command to add objects to a collection. The result
modifies the collection variable.

June 2006 Synopsys, Inc. 199

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Syntax
append_to_collection [-unique] var_name object_spec

Arguments
-unique Removes duplicates from the result.

var_name Variable that holds the collection.

object_spec Objects to append.

create_operating_conditions
Use the create_operating_conditions command to create the volatile operating
conditions and associate it to a library.

Syntax
create_operating_conditions [-name name] \

-library { lib_name1 lib_name2...}

Arguments
-name Specify the operating condition name.

-library Specify the library names.

compare_collections
Use the compare_collections command to compare two collections and see if they
contain the same objects. It returns 0 if they contain the same objects.

Syntax
compare_collections [-order_dependent] collection1 collection2

Arguments
-order_dependent Considers the of objects.

collection1 Base collection.

object_spec The collection to compare with the with the base collection.

200 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

connect_power_domain
Use the connect_power_domain command to connect a power domain to power net
information.Syntax

connect_power_domain [-primary_power_net name] \
[-primary_ground_net name] [-backup_power_net net] \
[-backup_ground_net name] [-internal_power_net name] \
[-internal_ground_net name] power_domain_name

Arguments
-primary_power_net Specify the primary power net name.

-primary_ground_net Specify the primary ground net name.

-backup_power_net Specify the power net name.

-backup_ground_net Specify the ground net name.

-internal_power_net Specify the power net name.

-internal_ground_net Specify the ground net name.

copy_collections
Use the copy_collections command to duplicate the contents of a collection, resulting in
a new collection.

Syntax
copy_collections collection1

Arguments
collection1 Collection to copy.

create_power_domain
Use the create_power_domain command to create a power domain.

Syntax
create_power_domain <domain_name> [-power_down]
[-power_down_ack <net or pin>] [-power_down_ctrl <net or pin>]
[-object_list <cell set>]

Arguments
domain_name Specify the power domain name within a quoted string.

-power_down Specify this option to power down.

June 2006 Synopsys, Inc. 201

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-power_down_ctrl Specify the single bit net that powers down the domain. If the
value of the net is 1, then the domain is powered-down
(always active high). If this option is not used, then the
corresponding power domain is always on.

-power_down_ack Specify the single bit net that acknowledges the power down
state of a domain.

cell set Specify the list of cells that should be associated with this
power domain. If no cell set is present, then this command
creates the top level power domain for the design.

create_power_net_info
Use the create_power_net_info command to create a power net information.

Syntax
create_power_net_info name [-power] [-gnd] [-voltage_range {min max}]\

[-voltage_values {val1 ... valN}] [-source_port design_port]

Arguments
name Specify the name of the power net.

-voltage_range Specify the legal voltage range for this power net.

-voltage_values Specify the legal voltage values for this power net.

-source_port Specify the top-level port in the design that is the source of
this power net.

delete_operating_conditions
Use the delete_operating_conditions command to delete the operating conditions.

Syntax
delete_operating_conditions [-name name] \

-library { lib_name1 lib_name2...}

Arguments
-name Specify the operating condition name.

-library Specify the library names.

202 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

disable_isolation_cell_recognition
Use the disable_isolation_cell_recognition command to disable the recognition of
isolation cells.

Syntax
disable_isolation_cell_recognition

enable_isolation_cell_recognition
Use the enable_isolation_cell_recognition command to force the checker to accept any
standard cell having the AND or the OR function as a possible isolation cell. In such a
case, the criteria for a standard cell to be recognized as an isolation cell for a given
power domain is as follows:

• Either one of the inputs of the cell is directly or indirectly (through combinatorial
logic) connected to an output of the given power domain, or the output of the cell is
directly/indirectly connected to an input of the given power domain.

• An input of the cell is directly/indirectly connected to the control signal(s) specified
for the given power domain.

Syntax
enable_isolation_cell_recognition [-strict]

Arguments
-strict Enables the strict matching mode when recognizing an

isolation cell.

filter_collection
Use the filter_collection command to filter a collection, resulting in a new collection.

Syntax
filter_collection [-regexp] [-nocase] collection1 expression

Arguments
-regexp Operators =~ and !~ use regular expressions.

-nocase Regular expression matches are case sensitive. Use this option
to make it case insensitive.

collection1 Collection to filter.

expression Filter expression

June 2006 Synopsys, Inc. 203

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

foreach_in_collection
Use the foreach_in_collection command to iterate over the elements of a collection.

Syntax
foreach_in_collection itr_var collections body

Arguments
itr_var Specifies the name of the iterator variable.

collections Specifies a list of collections over which to iterate.

body Specifies a script to execute per iteration.

get_all_input_boundaries_from_power_domain
Use the get_all_input_boundaries_from_power_domain command to get the list of input
pins of cells used by the checks on power domains.

Syntax
get_all_input_boundaries_from_power_domain <inferred_power_domain_name>

get_all_output_boundaries_from_power_domain
Use the get_all_output_boundaries_from_power_domain command to get the list of
output pins of cells used by the checks on power domains.

Syntax
get_all_output_boundaries_from_power_domain <inferred_power_domain_name>

get_cells
Use the get_cells command to create a list of cells.

Syntax
get_cells [-hierarchical] [-filter expression] [-quiet] [-regexp]

[-nocase] [-exact] [-of_objects objects] [patterns]

Arguments
-hierarchical Specify this option to find objects throughout hierarchy.

expression Specify the expression to filter collection with this expression.

-quiet Use this option to suppress all messages.

-regexp Patterns are regular expressions.

204 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-nocase Regular expression matches are case sensitive. Use this option
to make it case insensitive.

-exact Wildcards are treated as plain characters.

-of_objects Specify this option to get cells related to these objects.

patterns Specify the list of cell name patterns.

get_clocks
Use the get_clocks command to create a collection of clocks.

Syntax
get_cells [-hierarchical] [-filter expression] [-quiet] [-regexp]

[-nocase] [-exact] [patterns]

Arguments
-hierarchical Specify this option to find objects throughout hierarchy.

expression Specify the expression to filter collection with this expression.

-quiet Use this option to suppress all messages.

-regexp Patterns are regular expressions.

-nocase Regular expression matches are case sensitive. Use this option
to make it case insensitive.

-exact Wildcards are treated as plain characters.

-of_objects Specify this option to get cells related to these objects.

get_nets
Use the get_nets command to create a list of pins.

Syntax
get_nets [-hierarchical] [-filter expression] [-quiet] [-regexp]

[-nocase] [-exact] [-of_objects objects] [patterns]

Arguments
-hierarchical Specify this option to find objects throughout hierarchy.

expression Specify the expression to filter collection with this expression.

-quiet Use this option to suppress all messages.

-regexp Patterns are regular expressions.

June 2006 Synopsys, Inc. 205

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-nocase Regular expression matches are case sensitive. Use this option
to make it case insensitive.

-exact Wildcards are treated as plain characters.

-of_objects Specify this option to get ports related to these objects.

patterns Specify the list of net name patterns.

get_nth_power_net
Use the get_nth_power_net command to return the name of the nth power net.

Syntax
get_nth_power_net name

Arguments
name Specify the power domain name.

get_object_name
Use the get_object_name command to get the full name of the object in a single-object
collection.

Syntax
get_object_name collection

Arguments
collection Specifies the name of the collection that contains the single

object whose name is requested.

get_power_cells
Use the get_power_cells command to return the cells of a given power domain.

Syntax
get_power_cells name

Arguments
name Specify the power domain name.

206 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

get_power_down
Use the get_power_down command to return the power down net associated with the
given power domain.

Syntax
get_power_down name

Arguments
name Specify the power domain name.

get_power_down_ack
Use the get_power_down_ack command to return the power down ack net associated
with the given power domain.

Syntax
get_power_down_ack name

Arguments
name Specify the power domain name.

get_power_net_max_voltage
Use the get_power_net_max_voltage command to return the maximum value of the
power net voltage values.

Syntax
get_power_net_max_voltage name

Arguments
name Specify the power net name.

get_power_net_min_voltage
Use the get_power_net_min_voltage command to return the minimum value of the
power net voltage values.

Syntax
get_power_net_min_voltage name

Arguments
name Specify the power net name.

June 2006 Synopsys, Inc. 207

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

get_power_net_source_port
Use the get_power_net_source_port command to return the design port that is the source
of the power net.

Syntax
get_power_net_source_port name

Arguments
name Specify the power net name.

get_power_net_type
Use the get_power_net_type command to return the type of the power net (GND or
POWER).

Syntax
get_power_net_type name

Arguments
name Specify the power net name.

getn_power_net
Use the getn_power_net command to return the number of power nets.

Syntax
getn_power_net

get_pins
Use the get_pins command to create a list of nets.

Syntax
get_pins [-hierarchical] [-filter expression] [-quiet] [-regexp]

[-nocase] [-exact] [-of_objects objects] [patterns]

Arguments
-hierarchical Specify this option to find objects throughout hierarchy.

expression Specify the expression to filter collection with this expression.

-quiet Use this option to suppress all messages.

-regexp Patterns are regular expressions.

208 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-nocase Regular expression matches are case sensitive. Use this option
to make it case insensitive.

-exact Wildcards are treated as plain characters.

-of_objects Specify this option to get pins related to these objects.

patterns Specify the list of pin name patterns.

get_ports
Use the get_ports command to create a list of ports.

Syntax
get_ports [-hierarchical] [-filter expression] [-quiet] [-regexp]

[-nocase] [-exact] [-of_objects objects] [patterns]

Arguments
-hierarchical Specify this option to find objects throughout hierarchy.

expression Specify the expression to filter collection with this expression.

-quiet Use this option to suppress all messages.

-regexp Patterns are regular expressions.

-nocase Regular expression matches are case sensitive. Use this option
to make it case insensitive.

-exact Wildcards are treated as plain characters.

-of_objects Specify this option to get ports related to these objects.

patterns Specify the list of port name patterns.

get_power_domains
Use the get_power_domains command to create a list of power domains.

Syntax
get_power_domains [-filter expression] [-quiet] [-regexp]

[-nocase] [-exact] [patterns]

Arguments
expression Specify the expression to filter collection with this expression.

-quiet Use this option to suppress all messages.

-regexp Patterns are regular expressions.

June 2006 Synopsys, Inc. 209

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-nocase Regular expression matches are case sensitive. Use this option
to make it case insensitive.

-exact Wildcards are treated as plain characters.

patterns Specify the list of port name patterns.

infer_power_domain
Use the infer_power_domain command to infer a power domain in a PG-Netlist from a
power net.

Syntax
infer_power_domain [-power_net <name>] domain_name]

Arguments
-power_net Specify the power net name.

domain_name Specify the power domain name.

infer_power_domains
Use the infer_power_domains command to infer a power domain from the RTL
($power).

Syntax
infer_power_domains [-verbose]

Arguments
-verbose Specifies that it is in verbose mode

index_collection
Use the index_collection command to extract an object from a collection. Given a
collection and an index it, if the index is in range, this command extracts the object at
that index and creates a new collection containing only that object. The base collection
remains unchanged.

Syntax
index_collection collection1 index

Arguments
collection1 Specifies the collection to be searched.

210 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

index Specifies the index into the collection. Allowed values are
integers from 0 to sizeof_collection - 1.

print_config_summary
Use the print_config_summary command to print the configuration summary on the
console. The summary is displayed after the rules checking is done and is saved to
$PWD/leda_config.log.

Syntax
print_config_summary

query_objects
Use the query_objects command to search for and display the objects in the database.

Syntax
query_objects [-verbose] [-class class_name] [-truncate elem_count]

object_spec

Arguments
-verbose Displays the class of each object found. By default, only the

name of each object is listed. With this option, each object
name is preceded by its class, as in "cell:U1/U3"

-class class_name Establishes the class for a named element in the object_spec.
Valid classes are design, cell, net, and so on.

-truncate elem_count Truncates display to elem_count elements. By default, up to
100 elements are displayed. To see more or less elements, use
this option. To see all elements, set elem_count to 0.

object_spec Provides a list of objects to find and display. Each element in
the list is either a collection or an object name. Object names
are explicitly searched for in the database with class
class_name.

remove_from_collection
Use the remove_from_collection command to remove objects from a collection,
resulting in a new collection. The base collection remains unchanged.

June 2006 Synopsys, Inc. 211

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Syntax
remove_from_collection base_collection object_spec

Arguments
base_collection Specifies the base collection to be copied to the result

collection. Objects matching object_spec are removed from
the result collection.

object_spec Specifies the objects to be removed.

remove_isolation_cell
Use the remove_isolation_cell command to specify the isolation cell to be removed
from the list of isolation cells created by consecutive calls to the set_isolation_cell
command

Syntax
remove_isolation_cell {list of cell names} | -instance {instance_list}

Only the isolation cells defined with set_isolation_cell can be removed (not the DB
cells).

For more information, see the Leda Power Rules Guide.

remove_level_shifter
Use the remove_level_shifter command to specify the level shifter cells to be removed
from the list of level shifter cells created by consecutive calls to the set_level_shifter
command.

Syntax
remove_level_shifter {list of cell names}

Only the cells defined with set_level_shifter can be removed (not the DB cells).

For more information, see the Leda Power Rules Guide.

remove_power_domain
Use the remove_power_domain command to remove a power domain from the design.

212 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

Syntax
remove_power_domain [-all] | object_list

Arguments
-all Remove all the power domains from the design.

object_list Specify the list of power domains to be removed.

For more information, see the Leda Power Rules Guide.

remove_power_net_info
Use the remove_power_net_info command to remove a power net specification.

Syntax
remove_power_net_info [-all] | domain_name

Arguments
-all Remove all the power net from the design.

domain_name Specify the name of the power net.

For more information, see the Leda Power Rules Guide.

report_clock_gating_cells
Use the report_clock_gating_cells command to list all defined clock gating cells.

Syntax
report_clock_gating_cells

Example
This command will list all the defined clock gating cells.

leda> report_clock_gating_cells

For more information, see the Leda Power Rules Guide.

June 2006 Synopsys, Inc. 213

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

report_enable_pin
Use the report_enable_pin command to list the enable pin if any for a given cell.

Syntax
report_clock_gating_cells cell_name

Example
This command will list the enable pin of the cell IC12V.

leda> report_enable_pin IC12V

Enable pin of IC12V: EN

leda> report_enable_pin IC12VB

Enable pin of IC12V: <not found>

For more information, see the Leda Power Rules Guide.

report_isolation_cells
Use the report_isolation_cells command to list all the defined isolation cells.

Syntax
report_isolation_cells

Example
This command will list all the isolation cells.

leda> report_isolation_cells

Warning
This command will report automatically recognized isolation cells (when
enable_isolation_cell_recognition is set) only after one of the rules
ICINSALL, ICINSIN or ICINSOUT check has been executed.

For more information, see the Leda Power Rules Guide.

report_level_shifter
Use the report_level_shifter command to list all the defined level shifters.

214 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

Syntax
report_level_shifter

Example
This command will list all the defined level shifters.

leda> report_level_shifter

For more information, see the Leda Power Rules Guide.

report_operating_conditions
Use the report_operating_conditions command to report all or specific operating
conditions of a given library.

Syntax
report_operating_conditions [-name name] \

-library { lib_name1 lib_name2...}

Arguments
-name Specify the operating condition name.

-library Specify the library names.

report_pin_voltages
Use the report_pin_voltage command to list all pin voltage values defined for a given
cell.

Syntax
report_pin_voltages cell_name

Example
This command will list all the defined pin voltages of cell LS9_12V.

leda> report_pin_voltages LS9_12V

For more information, see the Leda Power Rules Guide.

report_power_domain
Use the report_power_domain command to report the information about the power
domains.

June 2006 Synopsys, Inc. 215

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Syntax
report_power_domain object_list

Arguments
object_list Specify the list of power domains to be reported.

Example
This command will list all the defined power domains.

leda> report_power_domain

For more information, see the Leda Power Rules Guide.

report_power_net_info
Use the report_power_net_info command to remove the power net specifications.

Syntax
report_power_net_info [object_list]

Arguments
object_list Specify the list of cells.

For more information, see the Leda Power Rules Guide.

report_power_pins
Use the report_power_pins command to report the power pins of the given cell.

Syntax
report_power_pins cell

Arguments
cell Specify the cell name.

For more information, see the Leda Power Rules Guide.

report_power_switches
Use the report_power_switches command to report the power switches.

Syntax
report_power_switches

216 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

reset_isolation_cell_recognition
Use the reset_isolation_cell_recognition command to reset the isolation cell recognition
database.

Syntax
reset_isolation_cell_recognition

For more information, see the Leda Power Rules Guide.

rule_deselect
Use the rule_deselect command to specify a rule that you want to deselect for checking.
You can put rule_deselect commands in a configuration file in your configuration
directory that Leda reads automatically (see “Deactivating Rules with a Rule
Configuration File” on page 102) or enter them interactively at the Tcl prompt in the
GUI. If you do not specify any options with rule_deselect, Leda deselects all rules in
your configuration by default.

Syntax
rule_deselect [-rule label] [-ruleset ruleset_name] \

[-policy policy_name] [-all] [-vhdl] [-verilog] [-file file_name] \
[-section {begin_line end_line}] [-through name] [-instance name]

Arguments
-rule Specify the label of the rule you want to deselect for checking.

-ruleset Specify the name of the ruleset_name you want to deselect for
checking.

-policy Specify the name of the policy_name you want to deselect for
checking.

-all Deselect all rules for checking.

-vhdl Deselect all VHDL rules for checking. It works only for
block-level rules.

-verilog Deselect all Verilog rules for checking. It works only for
block-level rules.

-file Specify the file_name where you want the rule deselected.

-section Specify the begin_line and end_line in the -file file_name (see
above) where you want the rule deselected.

June 2006 Synopsys, Inc. 217

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-through For chip-level and netlist rules, specify the instance name
through which to deselect the rule for checking. This
deactivates the rule for checking if the rule’s tracing
information passes through the specified instance name,
including errors completely contained in the specified instance
name.

-instance For chip-level and netlist rules, specify the instance name in
which to deselect the rule for checking. This deactivates the
rule for checking only if the rule’s tracing information is
completely contained in the specified instance name.

Example
This command does not return a value when it completes successfully. The following
example deselects rule B_1000 just for Verilog:

leda> rule_deselect -rule B_1000 -verilog

This next example does the same thing, except that it deselects the rule for checking on
both VHDL and Verilog project source files:

leda> rule_deselect -rule B_1000

And this last example deselects all rules in the Formality policy:
leda> rule_deselect -policy FORMALITY

rule_get_parameter
Use the rule_get_parameter command to get a list of valid parameters for the specified
rule. Not all rules have configurable parameters. If you execute this command on a rule
that does not have configurable parameter, the tool returns you to the prompt without
displaying any information.

Syntax
rule_get_parameter rule_label

Arguments
rule_label Specify the rule label.

Example
The following example shows that rule B_4200 (Entity name should end in _ENT) has a
parameter called ENTITY_NAME that you can configure using a regular expression to
match something other than _ENT:

leda> rule_get_parameter B_4200
{ENTITY_NAME {_ENT$} REGEXP}

218 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_get_selection
Use the rule_get_selection command to find out how many rules are selected for
checking based on the argument you provide. This command returns a number that tells
you how many rules are selected at that level in the hierarchy. For example, if you run
rule_get_selection on the top-level descriptor (language) and specify Verilog, the
command returns the number of Verilog rules selected for checking (1062 in the Demo
project that comes with the Checker). If you run this command on an individual rule,
you could get a return value of 2 if the rule is selected for checking in VHDL and
Verilog, 1 if it is selected for checking in just one language, or 0 if it is not selected for
checking at all. To check to see if an individual rule is selected for checking regardless
of language, use the -fast switch. When you use -fast, Leda returns a 1 if the rule is
selected for checking or a 0 if it is not.

Syntax
rule_get_selection [language.][policy.][ruleset.]]rule [-fast] [-total]

Arguments
rule Specify the language, policy, ruleset, and rule, a subset of

these, or just the rule.

-fast Use the -fast switch to find out if the specified rule is selected
for checking. When you use -fast, Leda returns a 1 (true) if the
rule is selected for checking or a 0 (false) if it is not.

-total Use the -total switch to see the total number of rules selected
for checking and the total rules available in the current
configuration, based on the arguments you provide.

Example
The following example returns the selection status for rule DFT_019 from the Design
For Test (DFT) policy:

leda> rule_get_selection DFT_019
2

In this example Leda returns a 2, which tells you that this rule is selected for checking in
VHDL and Verilog, which could be interesting to note for mixed-language designs.

In this next example for the same rule, we use the -fast switch, so Leda reports true (1),
because this rule is selected for checking:

leda> rule_get_selection DFT_019 -fast
1

June 2006 Synopsys, Inc. 219

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_get_all_masters_from_topic
The rule_get_all_masters_from_topic command returns a list of information for a topic,
including master IDs. Sometimes, prepackaged rules from different policies have
duplicate functionality because they cover the same topic. In such cases, the similar
rules share a common master ID.

Syntax
rule_get_all_masters_from_topic topic_name

Arguments
topic_name Specify the topic for which you want to obtain the master IDs. To

find out the legal topic names, first use the propagate command.

Returned Values
Returns a list of master information for the specified topic, including Master IDs, which
are used to identify redundant rules that appear in different policies for commonly
checked items.

Example
The following example returns the master information for all rules pertaining to clocks.

leda> rule_get_all_masters_from_topic clocks
{M_0423 {Avoid gated clock in the design}} {M_0306 {Avoid using
asynchronous logic}} {M_0276 {Avoid using both positive-edge and
negative-edge triggered flip-flops in your design}} {M_0295 {Buffers
should not be explicitly added to clock path}} {M_0418 {Clocks must not
be used as data}} {M_0419 {Data must be registered by 2 flipflops when
changing clock domain}} {M_0327 {Do not use event definitions for
clocks}} {M_0417 {Information on the number of clock signals in the
design}} {M_0326 {Internally generated clock detected (block level)}}
{M_0420 {Internally generated clock detected (chip level)}} {M_0983
{Multi-bit expression (e.g a[2:0]) used as clock}} {M_0325 {Multi-bit
expression used as clock}} {M_0323 {Multiple clocks in this unit
detected}} {M_0322 {Multiple event control statement in a task}} {M_0711
{Multiplexed clock is detected}} {M_0321 {Nested event control in a
task}} {M_0421 {No gated clock except in clock generator CKGEN}} {M_0452
{Only one clock is allowed in an always block}} {M_0805 {Register with
fixed value clock is detected}} {M_0422 {Use rising edge clock in the
design}} {M_0324 {Use rising edge clock in this unit}} {M_0451 {Use
rising edge flipflop.}}

220 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_get_all_rules_from_master_id
After you identify a master ID that it is interesting using the propagate command, you
can then find all individual rules that share that master ID using
rule_get_all_rules_from_master_id command.

Syntax
rule_get_all_rules_from_master_id master_id

Arguments
master_id Specify the master ID.

Returned Values
Returns a list of rules for the specified master ID in policy ruleset rule format.

Example
To find all rules governed by the M_0423 masterID, which concerns avoiding gated
clocks in the design, use the following command. Note that there are four rules that
check for this problem; they appear in the DesignWare, Leda General Coding
Guidelines, RMM, and Scirocco_Cycle policies.

leda> rule_get_all_rules_from_master_id M_0423
{DESIGNWARE ARCHITECTURE A_5C_R_B} {LEDA CLOCKS C_1207}
{RMM_RTL_CODING_GUIDELINES CLOCKS_AND_RESETS G_543_1} {SCIROCCO_CYCLE
CHIP_LEVEL SC_300}

June 2006 Synopsys, Inc. 221

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_get_all_topics
Use the rule_get_all_topics command to get a list of legal rule topic names. Use this
command in conjunction with the propagate command.

Syntax
rule_get_all_topics

Arguments
None.

Returned Values
Returns a list of all topics in the current configuration.

Example
The following example returns all topics covered by rules that are selected in the default
configuration for the Demo project that comes with the tool:

leda> rule_get_all_topics
CLOCKS CODING_FOR_SYNTHESIS CODING_STYLE DATA_TYPES DESIGN_STRUCTURE DFT
EXPRESSIONS HDL_LAYOUT HDL_NAMING MODELING RESETS RTL_NAMING
SIMULATION_CYCLE_MODE SIMULATION_MISMATCH SIMULATION_PERFORMANCE
STATEMENTS STATE_MACHINES

222 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_get_configuration
Use the rule_get_configuration command to return the configuration for the specified
rule, where configuration means the rule label, message, severity, HTML-based help file
name, and master ID.

Syntax
rule_get_configuration -policy policy_name -ruleset ruleset_name \

-rule rule_name [-type atttribute_name] [-format language]

Arguments
-policy Specify the policy name for the specified rule.

-ruleset Specify the ruleset name for the specified rule.

-rule Specify the rule name.

-type Get the specified configuration information. Legal values for
attribute_name include message, severity, html, masterid, selection,
and deselection_in_file. Default is all configuration information.

-format Get the HDL languages that this rule applies to.

Returned Values
Returns the configuration information for the specified rule.

Example
The following example returns the message text for rule SC_301 from the
Scirocco_Cycle policy:

leda> rule_get_configuration -policy scirocco_cycle \
-ruleset chip_level -rule sc_301 -type message
In any cycle mode partitioned block, the clock should be an input to the
block.

June 2006 Synopsys, Inc. 223

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_get_current_configuration
Use this command to get the current configuration name.

Syntax
rule_get_current_configuration [-writable]

Arguments
-writable Get the directory where any changes to the configuration will

be saved (if you have write permissions).

Returned Values
Returns the full path to the directory that contains your current configuration.

Example
The following example shows that the current configuration is Leda-optimized, which is
one of the prebuilt configurations that comes with Leda (see “Using Prebuilt
Configurations” on page 99):

leda> rule_get_current_configuration
/d/techpub1/docmaster/leda/leda403_software/configurations/
Leda-optimized

224 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_get_policies
Use the rule_get_policies command to get a list of available policies in the current
configuration for a given language (vhdl or verilog).

Syntax
rule_get_policies [-format language]

Arguments
-format Set the language. Legal values are verilog and vhdl. Default is all.

Returned Values
Returns a list of policies for the specified language available in the current
configuration.

Example
The following example returns a list of available policies for Verilog in the current
configuration:

leda> rule_get_policies -format verilog
DC DESIGN DESIGNWARE DFT FORMALITY IEEE_RTL_SYNTH_SUBSET LEDA
RMM_RTL_CODING_GUIDELINES VCS VERILINT VER_STARC_DSG

June 2006 Synopsys, Inc. 225

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_get_policy_attributes
Use the rule_get_policy_attributes command to get a list of attributes for the specified
language, policy, and attribute name.

Syntax
rule_get_policy_attributes -policy policy_name [-format language] \

[-name attribute_name]

Arguments
-policy Specify the policy name. Legal values include LEDA,

DESIGNWARE, SCIROCCO, FORMALITY, DC, VCS, VERILINT,
IEEE_VERILOG, IEEE_VHDL, VER_STARC_DSG, and
VHD_STARC_DSG. To get a list of legal policy names, use the
propagate command.

-format Specify the language. Legal values include verilog and vhdl. Default
is all.

-name Get information for the specified attribute_name. Legal values
include version, icon, write_permissions, language, and path. Default
is all.

Returned Values
Returns the value of an attribute for the specified policy and language.

Example
The following example returns the version for the Leda General Coding Guidelines
policy:

leda> rule_get_policy_attributes -policy LEDA -format verilog \
-name version
4.0.3

226 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_get_predefined_configurations
Use the rule_get_predefined_configurations command to get a list of the predefined
configurations that are set up for Leda. A predefined configuration contains a set of
rules from multiple policies for different HDL checking needs. The current list of
predefined configurations includes RTL, Gate-level, Leda-optimized, and Leda-classic
(see “Using Prebuilt Configurations” on page 99).

Syntax
rule_get_predefined_configurations

Arguments
None.

Example
leda> rule_get_predefined_configurations
Gate-level Leda-classic Leda-optimized RTL

June 2006 Synopsys, Inc. 227

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_get_rules
Use the rule_get_rules command to get a list of available rules for a given policy,
ruleset, and language.

Syntax
rule_get_rules -policy policy_name -ruleset ruleset_name \

[-format language]

Arguments
-policy Specify the policy_name. Legal values include LEDA,

DESIGNWARE, SCIROCCO, FORMALITY, DC, VCS, VERILINT,
IEEE_VERILOG, IEEE_VHDL, VER_STARC_DSG, and
VHD_STARC_DSG. To get an updated list of legal policy names, use
the propagate command.

-ruleset Specify the ruleset_name. To get a list of legal ruleset names, first
use the propagate command.

-format Set the language. Legal values include verilog and vhdl. Default is
all.

Returned Values
Returns a list of rules for the specified policy, ruleset, and language.

Example
The following example returns a list of Verilog rules in the DESIGN_STRUCTURE
ruleset of the Leda General Coding Guidelines policy:

leda> rule_get_rules -policy LEDA -ruleset DESIGN_STRUCTURE \
-format verilog
B_1000 B_1001 B_1005 B_1006 B_1010 B_1011 B_1013 C_1000 C_1001 C_1002
C_1003 C_1004 C_1005 C_1006 C_1007 C_1008 C_1009

228 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_get_ruleset_attributes
Use the rule_get_ruleset_attributes command to return the values for the specified
ruleset attributes.

Syntax
rule_get_ruleset_attributes -policy policy_name -ruleset ruleset_name \

[-format language] [-name attribute_name]

Arguments
-policy Specify the policy_name. Legal values include LEDA,

DESIGNWARE, SCIROCCO, FORMALITY, DC, VCS, VERILINT,
IEEE_VERILOG, IEEE_VHDL, VER_STARC_DSG, and
VHD_STARC_DSG. To get an updated list of legal policy names, use
the propagate command.

-ruleset Specify the ruleset_name. To get a list of legal ruleset names, use the
propagate command.

-format Get the language. Legal values include verilog and vhdl. Default is
all.

-name Get information about the specified attribute name. Legal values
include language, icon, chip, file, and obsolete. Default is all.

Returned Values
Returns the attribute values for the specified ruleset.

Example
The following example returns a list of all attribute values for the
DESIGN_STRUCTURE ruleset of the Leda General Coding Guidelines policy:

leda> rule_get_ruleset_attributes -policy LEDA -ruleset \
DESIGN_STRUCTURE -format verilog
{language {VERILOG VHDL}} {icon {warning.bmp warning.msk yellow}}
{chip 1} {file {/d/techpub1/docmaster/leda/leda4023R_software/
.leda_config/rules/leda/./LEDA.sl 10 /d/techpub1/docmaster/leda/
leda4023R_software/.leda_config/rules/leda/./LEDA.rl 10}}
{obsolete {{} 0 0}}

June 2006 Synopsys, Inc. 229

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_get_rulesets
Use the rule_get_rulesets command to get the rulesets for a given policy.

Syntax
rule_get_rulesets -policy policy_name [-format language]

Arguments
-policy Specify the policy name. Legal values include LEDA,

DESIGNWARE, SCIROCCO, FORMALITY, DC, VCS, VERILINT,
IEEE_VERILOG, IEEE_VHDL, VER_STARC_DSG, and
VHD_STARC_DSG. To get an updated list of legal policy names, use
the propagate command.

-format Set the language. Legal values include verilog and vhdl. Default is
all.

Returned Values
Returns the ruleset names for the specified policy.

Example
The following example returns a list of all rulesets in the Leda General Coding
Guidelines policy:

leda> rule_get_rulesets -policy LEDA
DATA_TYPES CLOCKS DESIGN_STRUCTURE EXPRESSIONS HDL_NAMING RESETS
RTL_NAMING RTL_SYNTHESIS STATEMENTS STATE_MACHINES SYSTEMVERILOG
HDL_LAYOUT

230 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_get_templateset_attributes
Use the rule_get_templateset_attributes command to get the attributes for a given
templateset.

Syntax
rule_get_templateset_attributes -policy policy_name \

-templateset templateset_name [-name attribute_name]

Arguments
-policy Specify the policy_name. Legal values include LEDA,

DESIGNWARE, SCIROCCO, FORMALITY, DC, VCS, VERILINT,
IEEE_VERILOG, IEEE_VHDL, VER_STARC_DSG, and
VHD_STARC_DSG. To get an updated list of legal policy names, use
the propagate command.

-templateset Specify the templateset_name. Legal values depend on the specified
policy. To find out the templatesets used in a given policy, use the
propagate command.

-name Set the attribute_name. Legal values include language, icon, chip,
file, and obsolete. Default is all.

Returned Values
Returns the attribute names for the specified policy and templateset.

Example
The following example returns all attribute names for the CLOCK_EDGES templateset
used in the Leda General Coding Guidelines policy.

leda> rule_get_templateset_attributes -policy LEDA \
-templateset CLOCK_EDGES
{language VHDL} {file {/d/techpub1/docmaster/leda/leda403_software/
.leda_config/rules/leda/../templateset/edges.rl 24}} {obsolete {{} 0}}

June 2006 Synopsys, Inc. 231

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_get_templatesets
Use the rule_get_templatesets command to get the names of all templatesets used by a
given policy. A templateset is like a Verilog module. It contains a set of template
declarations. No commands are allowed in templatesets, but they can contain other
templateset units. Rulesets can contain template declarations, commands, and other
templateset units.

Syntax
rule_get_templatesets -policy policy_name [-format language]

Arguments
-policy Specify the policy name. Legal values include LEDA,

DESIGNWARE, SCIROCCO, FORMALITY, DC, VCS, VERILINT,
IEEE_VERILOG, IEEE_VHDL, VER_STARC_DSG, and
VHD_STARC_DSG. To get an updated list of legal policy names, use
the propagate command.

-format Set the language. Legal values include verilog and vhdl. Default is
all.

Returned Values
Returns the names of all templatesets used in the specified policy.

Example
The following example returns the names of all templatesets used in the Leda General
Coding Guidelines policy:

leda> rule_get_templatesets -policy LEDA
CLOCK_EDGES IEEE_DECLARATIONS STD_DECLARATIONS RMM_CLOCK_EDGES
RMM_PROCESSES

232 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_link
Use the rule_link command to add a netlist checker custom rule developed in C/C++ to
the list of rules that run the next time the Checker is executed.

Syntax
rule_link file.ext rule_label

Arguments
file.ext Specify the object or shared library file that contains the

compiled rule source code, where ext is platform-dependent:

•Solaris—file.o (object file)

•Linux—file.so (shared library file)

•HP-UX—file.sl (shared library file)

rule_label Specify the C function name.

Example
The following example links the C object file toto.o to rule_1.

leda> rule_link toto.o rule_1

rule_load
Use the rule_load command to load all available policies.

Syntax
rule_load [-fast]

Arguments
-fast Do not open policy libraries.

Example
leda> rule_load

June 2006 Synopsys, Inc. 233

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_load_configuration
Use the rule_load_configuration command to load a configuration. A configuration
specifies the set of rules that you want to check.

Syntax
rule_load_configuration [-check] [directory_name]

Arguments
-check Save only if the configuration has been modified.

directory_name Specify the full path to the directory that contains the
configuration file. If you don’t specify a directory_name, Leda
loads the default configuration.

Example
The following example loads the configuration file located in the specified directory.
This configuration now determines which rules are checked the next time you run the
Checker.

leda> rule_load_configuration /u/me/MyLedaConfig

234 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_manage_policy
Use the rule_manage_policy command to create, compile, or delete a policy, ruleset, or
templateset.

Syntax
rule_manage_policy -policy policy_name [-ruleset ruleset_name] \

[-templateset templateset_name] [-format language] \
command [files list_of_files]

Arguments
-policy Specify the policy_name to manage. Legal values for prepackaged

policies include LEDA, DESIGNWARE, SCIROCCO,
FORMALITY, DC, VCS, VERILINT, IEEE_VERILOG,
IEEE_VHDL, VER_STARC_DSG, and VHD_STARC_DSG. To get
an updated list of legal policy names, use the propagate command.
You can also specify a name for a new policy that you want to create.

-ruleset Set the ruleset_name to manage. Default is all.

-templateset Set the templateset_name to manage. Default is all.

-format Set the language. Legal values include verilog and vhdl.

command Specify the action you want to take on a policy, ruleset, or
templateset. Legal values for command include create, compile, and
delete.

files Specify the list of files to create or compile. Use only with the create
and compile commands.

Example
The following example compiles two .sl VeRSL source code files into a new policy for
Verilog called MY_POLICY:

leda> rule_manage_policy -policy MY_POLICY -format verilog \
compile -files first.sl second.sl

June 2006 Synopsys, Inc. 235

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_patch
Use the rule_patch command to replace the object or shared library file for a
prepackaged rule developed in C/C++ with an updated version. This is a handy way to
patch in revised rules without having to rebuild policies.

Syntax
rule_patch file.ext rule_label

Arguments
file.ext Specify the object or shared library file that contains the

revised compiled rule source code, where ext is
platform-dependent:

•Solaris—file.o (object file)

•Linux—file.so (shared library file)

•HP-UX—file.sl (shared library file)

rule_label Specify the C function name.

Example
The following example replaces the C object file toto.o for rule_1.

leda> rule_patch toto.o rule_1

rule_save_configuration
Use the rule_save_configuration command to save the current configuration. When you
execute this command without arguments, Leda saves the current configuration in the
same directory where it was found (usually $LEDA_CONFIG).

Syntax
rule_save_configuration [-check] [dir_name]

Arguments
-check Save the configuration only if it has changed.

dir_name Specify a different directory where you want to save the current
configuration.

Example
The following example saves the current configuration in the specified directory:

leda> rule_save_configuration /u/me/LEDA_CONFIG
The current configuration is saved into /u/me/LEDA_CONFIG

236 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_get_current_configuration
Use the rule_get_current_configuration command to get the current configuration name.

Syntax
rule_get_current_configuration [-writable]

Arguments
-writable Get the directory where any changes to the configuration will

be saved (if you have write permissions).

Returned Values
Returns the full path to the directory that contains your current configuration.

Example
The following example shows that the full path to the current configuration; in this case
Leda-optimized, which is one of the prebuilt configurations that come with Leda (see
“Using Prebuilt Configurations” on page 99).

leda> rule_get_current_configuration
/d/techpub1/docmaster/leda/leda403_software/configurations/
Leda-optimized

June 2006 Synopsys, Inc. 237

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_set_default_configuration
Use the rule_set_default_configuration command to select the recommended set of rules
for any policy (set of prepackaged rules).

Syntax
rule_set_default_configuration -policy policy_name [-check]

Arguments
-policy Specify the policy_name. Legal values include LEDA,

DESIGNWARE, SCIROCCO, FORMALITY, DC, VCS, VERILINT,
IEEE_VERILOG, IEEE_VHDL, VER_STARC_DSG, and
VHD_STARC_DSG. To get an updated list of legal policy names, use
the propagate command.

-check Check to see if the specified policy has a default configuration.

Returned Values
When used with the -check switch, this command returns true (1) if the specified policy
is selected for checking or false (0) if the specified policy is not selected for checking.
When used without the -check switch, this command returns a message indicating that
the recommended set of rules for the specified policy was loaded.

Example
The following example selects the recommended set of rules for the Leda policy, which
contains 300 prepackaged rules. When you set the recommended set of rules for the
Leda policy, there are 206 recommended rules selected for checking.

leda> rule_set_default_configuration -policy LEDA
Setting default configuration for the policy LEDA done.

238 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_set_predefined_configuration
Use this command to load one of the predefined configurations that are set up for Leda.
A predefined configuration contains a set of rules from multiple policies for different
HDL checking needs. The current list of predefined configurations includes RTL,
Gate-level, Leda-optimized, and Leda-classic (see “Using Prebuilt Configurations” on
page 99).

Syntax
rule_set_predefined_configuration config_name

Arguments
config_name Set the config_name. For a list of legal configuration names,

use the propagate command.

Example
The following example loads the Leda-optimized prebuilt configuration and shows the
policies that are loaded as a result. Note that Leda-optimized must be typed exactly as
shown because the config_name argument is case-sensitive.

leda> rule_set_predefined_configuration Leda-optimized
Loading policy DC...
Loading policy DC done
Loading policy DESIGNWARE...
Loading policy DESIGNWARE done
Loading policy DESIGN...
Loading policy DESIGN done
Loading policy DFT...
Loading policy DFT done
Loading policy FORMALITY...
Loading policy FORMALITY done
Loading policy IEEE_RTL_SYNTH_SUBSET...
Loading policy IEEE_RTL_SYNTH_SUBSET done
Loading policy LEDA...
Loading policy LEDA done
Loading policy RMM_RTL_CODING_GUIDELINES...
Loading policy RMM_RTL_CODING_GUIDELINES done
Loading policy VCS...
Loading policy VCS done
Loading policy VERILINT...
Loading policy VERILINT done
Loading policy VER_STARC_DSG...
Loading policy VER_STARC_DSG done
Loading policy SCIROCCO_CYCLE...
Loading policy SCIROCCO_CYCLE done
Loading policy VHD_STARC_DSG...
Loading policy VHD_STARC_DSG done

June 2006 Synopsys, Inc. 239

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_select
Use the rule_select command to select a rule, ruleset, or policy for checking that was
previously deselected (see “rule_deselect” on page 216). If you use this command on a
rule, ruleset, or policy that was not previously deselected, it has no effect. A common
idiom that you can use to make sure this command works as expected is to write a
configuration file that first deselects all rules and then selects just the ones you want to
check your design with. For example, your configuration file can be as simple as this if
you want to check only the rules in the Design policy (netlist checks):

rule_deselect -all
rule_select -p DESIGN

If you do not specify any options with rule_select, Leda selects all rules in your
configuration by default. You can put rule_select commands in a configuration file in
your configuration directory that Leda reads automatically or enter them interactively at
the Tcl prompt.

Syntax
rule_select [-rule label] [-ruleset ruleset_name] \

[-policy policy_name] [-all] [-vhdl] [-verilog] [-file file_name]
[-section {begin_line end_line}] [-through name] [-instance name]

Arguments
-rule Specify the label of the rule you want to select for checking.

-ruleset Specify the ruleset_name you want to select for checking.

-policy Specify the policy_name you want to select for checking.

-all Select all rules for checking. This is the default.

-vhdl Select just VHDL rules for checking. It works only for
block-level rules.

-verilog Select just Verilog rules for checking. It works only for
block-level rules.

-file Specify the file_name where you want the rule selected.

-section Specify the begin_line and end_line in the -file file_name (see
above) where you want the rule selected.

-through For chip-level and netlist rules, specify the instance name
through which to select the rule for checking. This activates
the rule for checking if the rule’s tracing information passes
through the specified instance name, including errors
completely contained in the specified instance name.

240 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-instance For chip-level and netlist rules, specify the instance name in
which to select the rule for checking. This activates the rule
for checking only if the rule’s tracing information is
completely contained in the specified instance name.

Example
The following example selects rule B_1000 from the Leda General Coding Guidelines
policy on both VHDL and Verilog project source files. This command does not return a
value if it succeeds, but you can confirm that the rule has been selected on your next run
with the tool or look at the tail of the configuration file for the currently loaded
configuration, where you will see your rule_select command saved.

leda> rule_select -rule B_1000

rule_set_html
Use the rule_set_html command to set the name of the HTML help file for a given rule.
This command is best used for custom rules that you develop, because Leda’s
prepackaged rules already have HTML help files specified for them.

Syntax
rule_set_html -rule [language.][policy.][ruleset.]]rule \

-html html_filename

Arguments
-rule Specify the rule label. Optionally specify the language for

rules that apply to both VHDL and Verilog. Also, optionally
specify the policy and ruleset.

-html Specify the html_filename that contains help information for
that rule.

Example
The following example sets the HTML help file name for RULE_1 to the RULE_1.html
file. This command does not return a value when it completes successfully.

leda> rule_set_html -rule RULE_1 -html /u/me/leda/RuleHelp/RULE_1.html

June 2006 Synopsys, Inc. 241

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_set_message
Use the rule_set_message command to set the message text for a given rule.

Syntax
rule_set_message -rule [language.][policy.][ruleset.]]rule \

-message message_text

Arguments
-rule Specify the rule to deselect using the rule label. Optionally

specify the language for rules that apply to both VHDL and
Verilog. Also, optionally specify the policy and ruleset.

-message Specify the message text to be used for the specified rule.
Enclose messages longer than one word in double quotes.

Example
The following example sets the message for RULE_1 to “This is a new message”. This
command does not return a value when it completes successfully.

leda> rule_set_message -rule RULE_1 -message “This is a new message”

rule_set_parameter
Use the rule_set_parameter command to change the value node for a rule. For the
prepackaged rules that come with Leda, there is a set of predefined macros that you can
use to access and change the value that a rule is constraining (see “Predefined Macros
for Prepackaged Rules” on page 243).

For custom rules that you write, you need to build a macro into your VeRSL or VRSL
source code for a rule in the form:

<label>_<paraName>

in order to be able to later modify the value of the parameter for that rule using the
rule_set_parameter command.

When this command executes successfully, it does not return a value. You can confirm
that the parameter was set as you wanted using the propagate command.

Syntax
rule_set_parameter -rule label -parameter (label | macro_name) \

-value value

Arguments
-rule Specify the label for the rule whose value node you want to

change.

242 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-parameter Specify the parameter label or predefined macro_name for the
parameter that you want to set. In general, you use parameter
labels to modify value nodes for custom rules you created and
macro names to modify value nodes for prepackaged rules.
(See “Predefined Macros for Prepackaged Rules” on
page 243.).

-value Specify the value for the parameter.

Example
For example, rule B_4203 in the Leda General Coding Guidelines policy concerns
module names. In fact, this rule makes sure that all module names in your design end in
“_MOD”. If your design team has a different convention, you can easily change the
value that the rule enforces, using the rule_set_parameter command, as follows:

leda> rule_set_parameter -rule B_2403 -parameter MODULE_NAME \
-value “_MODULE$”

After you run this command, rule B_2403 enforces a new naming convention on module
names in your design. Note the MODULE_NAME string in this example, which is a
predefined macro that you can use with specific prepackaged rules where it makes sense
(rules about module names).

Note
You can also use the Leda Rule Wizard in the GUI to change value nodes for
rules (Check > Configure from main window).

Defining Multiple Values into a Parameter
Following is the syntax for defining multiple values into a parameter if the rule is a
block-level rule.

Syntax
rule_set_parameter -rule label -parameter (label | macro_name) \

-value {reg_exp}

Example
For example, rule VER_1_1_1_7 in the VER_STARC_DSG policy corncerns active
low signal names. This rule makes sure that all active low signals in your design end
with either “_X” or “_N”. If your design team has a different convention, you can easily
change the value that the rule enforces, using the rule_set_parameter command, as
follows:

leda> rule_set_parameter -rule VER_1_1_1_7 -parameter SIGNAL_NAME \
-value {_X$\|_N$}

June 2006 Synopsys, Inc. 243

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

After you run this command, rule VER_1_1_1_7 enforces a new naming convention on
signals that are active low in your design.

Following is the syntax for defining multiple values into a parameter if the rule is a
netlist rule.

Syntax
rule_set_parameter -rule label -parameter (label | macro_name) \

-value {value_1 value_2 value_3 ... value_n}

Example
For example, multiple values for TIE_OFF_CELLS parameter of rule NTL_CON17 can
be specified as follows:

leda> rule_set_parameter -rule NTL_CON17 -parameter TIE_OFF_CELLS \
-value {tohlsx1 tohlx1 tohsx1 tohx1 tolsx1 tolx1}

Predefined Macros for Prepackaged Rules
Following are predefined rule-specific, rule_set_parameter commands that you can use
as a reference or cut-and-paste to your Tcl shell in the Leda environment. The values
shown in these commands are the existing defaults. Change the parameter’s value
argument to your new setting before checking any of these rules:

rule_set_parameter -rule A_3C_R -parameter SYNCHRONIZER_FF_NUMBER -value {1}
rule_set_parameter -rule B_1006 -parameter MODULE_NAME -value {^TOP}
rule_set_parameter -rule B_1202 -parameter NB_MAX_CLOCKS -value {1}
rule_set_parameter -rule C_1200 -parameter NB_MAX_CLOCKS -value {1}
rule_set_parameter -rule C_1202 -parameter SYNCHRONIZER_FF_NUMBER -value {1}
rule_set_parameter -rule C_1204 -parameter UNIT_NAME -value {^CKGEN$}
rule_set_parameter -rule B_1405 -parameter NB_MAX_ASYNC_RESETS -value {1}
rule_set_parameter -rule B_1406 -parameter NB_MAX_SYNC_RESETS -value {1}
rule_set_parameter -rule B_1409 -parameter NB_MAX_ASYNC_RESETS -value {1}
rule_set_parameter -rule B_1410 -parameter NB_MAX_SYNC_RESETS -value {1}
rule_set_parameter -rule C_1400 -parameter NB_MAX_RESETS -value {1}
rule_set_parameter -rule C_1402 -parameter UNIT_NAME -value {RSTGEN}
rule_set_parameter -rule B_3606 -parameter STATE_NAME -value {_cs$}
rule_set_parameter -rule B_3608 -parameter NB_MAX_STATES -value {40}
rule_set_parameter -rule B_4200 -parameter ENTITY_NAME -value {_ENT$}
rule_set_parameter -rule B_4201 -parameter FILENAME -value {<entity>.vhd}
rule_set_parameter -rule B_4202 -parameter ARCHITECTURE_NAME -value {_ARC$}
rule_set_parameter -rule B_4203 -parameter MODULE_NAME -value {_MOD$}
rule_set_parameter -rule B_4204 -parameter FILENAME \

-value {<architecture>.vhd}
rule_set_parameter -rule B_4205 -parameter FILENAME -value {<module>.v}
rule_set_parameter -rule B_4206 -parameter PACKAGE_NAME -value {_PACK$}
rule_set_parameter -rule B_4207 -parameter FILENAME -value {<package>.vhd}
rule_set_parameter -rule B_4208 -parameter FILENAME \

-value {<package>_body.vhd}
rule_set_parameter -rule B_4209 -parameter CONFIGURATION_NAME -value {_CONF$}

244 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_set_parameter -rule B_4210 -parameter FILENAME \
-value {<configuration>.vhd}

rule_set_parameter -rule B_4211 -parameter SIGNAL_NAME -value {^S}
rule_set_parameter -rule B_4212 -parameter VARIABLE_NAME -value {^V}
rule_set_parameter -rule B_4213 -parameter CONSTANT_NAME -value {^C}
rule_set_parameter -rule B_4214 -parameter COMPONENT_NAME -value {^COMP}
rule_set_parameter -rule B_4215 -parameter TYPE_NAME -value {^T}
rule_set_parameter -rule B_4216 -parameter SUBTYPE_NAME -value {^ST}
rule_set_parameter -rule B_4217 -parameter FUNCTION_NAME -value {^F}
rule_set_parameter -rule B_4218 -parameter PROCEDURE_NAME -value {^P}
rule_set_parameter -rule B_4219 -parameter INSTANCE_NAME -value {^U_}
rule_set_parameter -rule B_4220 -parameter BLOCK_NAME -value {_BLOCK$}
rule_set_parameter -rule B_4221 -parameter GENERATE_NAME -value {_GEN$}
rule_set_parameter -rule B_4222 -parameter ALWAYS_NAME -value {_ALW$}
rule_set_parameter -rule B_4223 -parameter PROCESS_NAME -value {_PROC$}
rule_set_parameter -rule B_4224 -parameter PRIMITIVE_NAME -value {^P_}
rule_set_parameter -rule B_4225 -parameter REGISTER_NAME -value {_r$}
rule_set_parameter -rule B_4226 -parameter NET_NAME -value {^w}
rule_set_parameter -rule B_4227 -parameter INPUT_PORT_NAME -value {_in$}
rule_set_parameter -rule B_4228 -parameter OUTPUT_PORT_NAME -value {_out$}
rule_set_parameter -rule B_4229 -parameter INOUT_PORT_NAME -value {_inout$}
rule_set_parameter -rule B_4230 -parameter TASK_NAME -value {^T_}
rule_set_parameter -rule B_4231 -parameter INITIAL_NAME -value {_INIT$}
rule_set_parameter -rule B_4400 -parameter LATCH_INPUT_NAME -value {_d$}
rule_set_parameter -rule B_4401 -parameter LATCH_OUTPUT_NAME -value {_q$}
rule_set_parameter -rule B_4402 -parameter FF_INPUT_NAME -value {_d$}
rule_set_parameter -rule B_4403 -parameter FF_OUTPUT_NAME -value {_r$}
rule_set_parameter -rule B_4404 -parameter CLK_NAME -value {^clk}
rule_set_parameter -rule B_4405 -parameter ASYNC_RST_NAME -value {^rst}
rule_set_parameter -rule B_4406 -parameter SYNC_RST_NAME -value {^rst}
rule_set_parameter -rule B_4407 -parameter TRISTATE_NAME -value {_z$}
rule_set_parameter -rule VER_1_1_1_1 -parameter FILENAME \

-value {^<module>.v$}
rule_set_parameter -rule VER_1_1_1_7 -parameter SIGNAL_NAME -value {_X$\|_N$}
rule_set_parameter -rule VER_1_1_1_8 -parameter INSTANCE_NAME \

-value {^<module>$\|^<module>\[0-9_\]+$}
rule_set_parameter -rule VER_1_1_1_9A -parameter MAX_TOP_NAME_LENGTH \

-value {16}
rule_set_parameter -rule VER_1_1_1_9C -parameter MAX_TOP_PORT_NAME_LENGTH \

-value {16}
rule_set_parameter -rule VER_1_1_2_1A -parameter MIN_MODULE_NAME_LENGTH \

-value {2}
rule_set_parameter -rule VER_1_1_2_1B -parameter MAX_MODULE_NAME_LENGTH \

-value {32}
rule_set_parameter -rule VER_1_1_2_1C -parameter MIN_INSTANCE_NAME_LENGTH \

-value {2}
rule_set_parameter -rule VER_1_1_2_1D -parameter MAX_INSTANCE_NAME_LENGTH \

-value {32}
rule_set_parameter -rule VER_1_1_3_3A -parameter MIN_CHARS -value {2}
rule_set_parameter -rule VER_1_1_3_3B -parameter MAX_CHARS -value {40}
rule_set_parameter -rule VER_1_1_4_1 -parameter FILENAME \

-value {^.+.h$\|^.+.vh$\|^.+.inc$\|^.+.ht$\|^.+.tsk$}
rule_set_parameter -rule VER_1_1_4_2 -parameter PARAMETER_NAME -value {^P_}

June 2006 Synopsys, Inc. 245

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_set_parameter -rule VER_1_1_5_1A -parameter FF_OUTPUT_NAME\
-value {_REG$\|_reg$}

rule_set_parameter -rule VER_1_1_5_1B -parameter FF_OUTPUT_NAME \
-value {^<clock>\|<clock>$}

rule_set_parameter -rule VER_1_1_5_2A -parameter CLK_NAME -value \
{^CLK$\|^CK$\|^CLK\[0-9_\]+$\|^CK\[0-9_\]+$\|^CLK\[a-zA-Z0-9_\]$\|^CLK\[a-zA-Z0
-9_\]\[a-zA-Z0-9_\]$\|^CLK\[a-zA-Z0-9_\]\[a-zA-Z0-9_\]\[a-zA-Z0-9_\]$\|^CK\[a-z
A-Z0-9_\]$\|^CK\[a-zA-Z0-9_\]\[a-zA-Z0-9_\]$\|^CK\[a-zA-Z0-9_\]\[a-zA-Z0-9_\]\[
a-zA-Z0-9_\]$}
rule_set_parameter -rule VER_1_1_5_2B -parameter RST_NAME -value \
{^RST$\|^RST\[0-9_\]+$\|^RST\[a-zA-Z0-9_\]$\|^RST\[a-zA-Z0-9_\]\[a-zA-Z0-9_\]$\
|^RST\[a-zA-Z0-9_\]\[a-zA-Z0-9_\]\[a-zA-Z0-9_\]$}
rule_set_parameter -rule VER_1_2_1_1A -parameter NB_MAX_CLOCKS -value {1}
rule_set_parameter -rule VER_1_3_2_1 -parameter UNIT_NAME -value {GENRST}
rule_set_parameter -rule VER_1_4_1_1 -parameter UNIT_NAME -value {GENCLK}
rule_set_parameter -rule VER_1_4_4_1 -parameter NB_MAX_CLOCKS -value {1}
rule_set_parameter -rule VER_1_5_1_1 -parameter SYNCHRONIZER_FF_NUMBER \

-value {1}
rule_set_parameter -rule VER_1_6_4_3 -parameter NB_MAX_PORTS -value {200}
rule_set_parameter -rule VER_2_5_1_4 -parameter MAX_DRIVERS -value {5}
rule_set_parameter -rule VER_2_6_1_3 -parameter NB_MAX_OUTPUTS -value {5}
rule_set_parameter -rule VER_2_8_2_1 -parameter NB_MAX_BITS -value {16}
rule_set_parameter -rule VER_2_8_2_2 -parameter NB_MAX_CASE_ITEMS \

-value {100}
rule_set_parameter -rule VER_2_11_1_4 -parameter NB_MAX_STATES -value {40}
rule_set_parameter -rule VER_3_2_5_2 -parameter NB_MAX_BITS -value {15}
rule_set_parameter -rule VER_3_5_3_1A -parameter HEADER_CONTENT \

-value {FILENAME}
rule_set_parameter -rule VER_3_5_3_1B -parameter HEADER_CONTENT -value {TYPE}
rule_set_parameter -rule VER_3_5_3_1C -parameter HEADER_CONTENT \

-value {FUNCTION}
rule_set_parameter -rule VER_3_5_3_1D -parameter HEADER_CONTENT -value {edit}
rule_set_parameter -rule VER_3_5_3_1E -parameter HEADER_CONTENT \

-value {Author}
rule_set_parameter -rule VER_3_5_3_1F -parameter HEADER_CONTENT -value {Date}
rule_set_parameter -rule VHD_1_1_1_1 -parameter FILENAME \

-value {^<entity>.vhd$}
rule_set_parameter -rule VHD_1_1_1_7 -parameter SIGNAL_NAME -value {_X$\|_N$}
rule_set_parameter -rule VHD_1_1_1_8 -parameter INSTANCE_NAME -value \
{^U<entity>$\|^U_<entity>$\|^U<entity>_\[0-9\]$\|^U_<entity>_\[0-9\]$\|^U<entit
y>_\[0-9\]\[0-9\]$\|^U_<entity>_\[0-9\]\[0-9\]$\|^U<entity>_\[0-9\]\[0-9\]\[0-9
\]$\|^U_<entity>_\[0-9\]\[0-9\]\[0-9\]$}
rule_set_parameter -rule VHD_1_1_1_9A -parameter MAX_ENTITY_NAME_LENGTH \

-value {16}
rule_set_parameter -rule VHD_1_1_1_9C -parameter MAX_PORT_NAME_LENGTH \

-value {16}
rule_set_parameter -rule VHD_1_1_2_1A -parameter MIN_ENTITY_NAME_LENGTH \

-value {2}
rule_set_parameter -rule VHD_1_1_2_1B -parameter MAX_ENTITY_NAME_LENGTH \

-value {32}
rule_set_parameter -rule VHD_1_1_2_1C -parameter MIN_INSTANCE_NAME_LENGTH \

-value {2}

246 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

rule_set_parameter -rule VHD_1_1_2_1D -parameter MAX_INSTANCE_NAME_LENGTH \
-value {32}

rule_set_parameter -rule VHD_1_1_3_3A -parameter MIN_CHARS -value {2}
rule_set_parameter -rule VHD_1_1_3_3B -parameter MAX_CHARS -value {40}
rule_set_parameter -rule VHD_1_1_4_1 -parameter FILENAME -value {_pac.vhd$}
rule_set_parameter -rule VHD_1_1_4_2B -parameter CONSTANT_NAME \

-value {^C_\|^P_}
rule_set_parameter -rule VHD_1_1_5_1A -parameter FF_OUTPUT_NAME \

-value {_REG$\|_reg$}
rule_set_parameter -rule VHD_1_1_5_1B -parameter FF_OUTPUT_NAME \

-value {<clock>}
rule_set_parameter -rule VHD_1_1_5_2A -parameter CLK_NAME -value \
^CLK$\|^CK$\|^CLK\[0-9_\]+$\|^CK\[0-9_\]+$\|^CLK\[A-Z0-9_\]$\|^CLK\[A-Z0-9_\]\[
A-Z0-9_\]$\|^CLK\[A-Z0-9_\]\[A-Z0-9_\]\[A-Z0-9_\]$\|^CK\[A-Z0-9_\]$\|^CK\[A-Z0-
9_\]\[A-Z0-9_\]$\|^CK\[A-Z0-9_\]\[A-Z0-9_\]\[A-Z0-9_\]${
rule_set_parameter -rule VHD_1_1_5_2B -parameter RST_NAME -value \
{^RST$\|^RST\[0-9_\]+$\|^RST\[a-zA-Z0-9_\]$\|^RST\[a-zA-Z0-9_\]\[a-zA-Z0-9_\]$\
|^RST\[a-zA-Z0-9_\]\[a-zA-Z0-9_\]\[a-zA-Z0-9_\]$}
rule_set_parameter -rule VHD_1_1_6_1 -parameter ARCHITECTURE_NAME \

-value {^RTL$\|^BEH$\|^TB$\|^SIM$}
rule_set_parameter -rule VHD_1_2_1_1A -parameter NB_MAX_CLOCKS -value {1}
rule_set_parameter -rule VHD_1_3_2_1 -parameter UNIT_NAME -value {GENRST}
rule_set_parameter -rule VHD_1_4_1_1 -parameter UNIT_NAME -value {GENCLK}
rule_set_parameter -rule VHD_1_4_4_1 -parameter NB_MAX_CLOCKS -value {1}
rule_set_parameter -rule VHD_1_5_1_1 -parameter SYNCHRONIZER_FF_NUMBER \

-value {1}
rule_set_parameter -rule VHD_1_6_4_3 -parameter NB_MAX_PORTS -value {200}
rule_set_parameter -rule VHD_2_1_5_1 -parameter NB_MAX_LEVELS -value {5}
rule_set_parameter -rule VHD_2_3_3_1 -parameter NB_MAX_CLOCK_EDGE -value {1}
rule_set_parameter -rule VHD_2_5_1_4 -parameter MAX_DRIVERS -value {5}
rule_set_parameter -rule VHD_2_6_1_3 -parameter NB_MAX_OUTPUTS -value {5}
rule_set_parameter -rule VHD_2_6_1_4 -parameter NB_MAX_LINES -value {200}
rule_set_parameter -rule VHD_2_7_3_1 -parameter NB_MAX_LEVELS -value {5}
rule_set_parameter -rule VHD_2_8_2_2 -parameter NB_MAX_CASE_ITEMS \

-value {100}
rule_set_parameter -rule VHD_2_11_1_4 -parameter NB_MAX_STATES -value {40}
rule_set_parameter -rule VHD_3_1_4_5 -parameter LINE_LENGTH -value {110}
rule_set_parameter -rule VHD_3_5_3_1A -parameter HEADER_CONTENT \

-value {FILENAME}
rule_set_parameter -rule VHD_3_5_3_1B -parameter HEADER_CONTENT -value {TYPE}
rule_set_parameter -rule VHD_3_5_3_1C -parameter HEADER_CONTENT \

-value {FUNCTION}
rule_set_parameter -rule VHD_3_5_3_1D -parameter HEADER_CONTENT -value {edit}
rule_set_parameter -rule VHD_3_5_3_1E -parameter HEADER_CONTENT \

-value {Author}
rule_set_parameter -rule VHD_3_5_3_1F -parameter HEADER_CONTENT -value {Date}

June 2006 Synopsys, Inc. 247

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

rule_set_severity
Use the rule_set_severity command to change the severity level for a rule. This
command returns a 1 (true) when it completes successfully. Otherwise, you get an error
message.

Syntax
rule_set_severity -rule [language.][policy.][ruleset.]]rule \

-severity level

Arguments
-rule Specify the rule name using the language, policy, ruleset, and

rule label, or just specify the rule label.

-severity Set the new severity level to be flagged by the tool when the
specified rule is violated. Legal values include note, warning,
error, and fatal.

Example
The following example sets the severity level for rule C_1005 to NOTE. The return
value of 1 at the end of the transcript means that the operation completed successfully.

leda> rule_set_severity -rule VERILOG.LEDA.DESIGN_STRUCUTURE.C_1005 \
-severity NOTE

1

set_clock_gating_cell
Use the set_clock_gating_cell command to set the specified cells as clock gating cells.

Syntax
set_clock_gating_cells {list of cell names}

Arguments
cell names Specify the Verilog module/primitive names or VHDL entity

names as cell names.

For more information, see the Leda Power Rules Guide.

248 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

set_enable_pin
Use the set_enable_pin command to specify the enable pin name for a specific cell.

Syntax
set_enable_pin cell_name enable_pin_name

Arguments
cell names Specify the Verilog module/primitive names or VHDL entity

names as cell names.

Example
This command will set EN as the enable pin for the cell IC12V.

leda> set_enable_pin IC12V EN

For more information, see the Leda Power Rules Guide.

set_level_shifter
Use the set_level_shifter command to set the specified cells as level shifters.

Syntax
set_level_shifter {list of cell name}

Arguments
cell names Specify the Verilog module/primitive names or VHDL entity

names as cell names.

For more information, see the Leda Power Rules Guide.

set_operating_conditions
Use the set_operating_conditions command to set the operating conditions.

Syntax
set_operating_conditions [-library library] [-object_list object_list] \

[-max max_condition] [-min min_condition] \
[-max_library max_library] [-min_library min_library] \
[-max_phys <max_operating_condition_name>] \
[-min_phys <min_operating_condition_name>] \
[-object_list object_list] [-power_domains power_domain_list] \
[condition]

Arguments
-library Specify the library to search.

June 2006 Synopsys, Inc. 249

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-max Specify the maximum operating condition name.

-min Specify the maximum operating condition name.

-max_library Specify the library containing maximum operating
 conditions.

-min_library Specify the library containing minimum operating
 conditions.

-max_phys Specify the name of the maximum phys tech operating
 conditions.

-min_library Specify the name of the minimum phys tech operating
 conditions.

-object_list Specify the port/cell objects.

-power_domains Specify the power domain objects.

condition Specify the single operating condition name.

set_pin_voltage
Use the set_pin_voltage command to specify the voltage of a particular pin of a cell.

Syntax
set_pin_voltage cell_name pin_name voltage_float_value

Arguments
cell names Specify the Verilog module/primitive names or VHDL entity

names as cell names.

Example
This command will set pin A of cell LS12V to 1.2 volts.

leda> set_pin_voltage LS12V A 1.2

For more information, see the Leda Power Rules Guide.

set_power_pin
Use the set_power_pin command to specify the power pins of the given cell.

Syntax
set_power_pin [-power cell_name pin_name] [-gnd cell_name pin_name]

250 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

set_power_domain
Use the set_power_domain command to set the power domain with given instances as
power regions.

Syntax
set_power_domain -name <name> [-always_on] <instance_list>

Arguments
-name Specify the domain name.

-instance_list Specify the instance list.

set_power_domain_ctrl
Use the set_power_domain_ctrl command to associate control signals(s) with each
power domain.

Syntax
set_power_domain_ctrl [-name domain_name] [-signals signal |

{signal_list} value | {value_list}

Arguments
signal_list Specifies the list of hierarchical names of ports/signals.

value_list Specifies the list of values for the signals at which the
corresponding power domain is switched on.

Example
This command will switch on power domain POW1 when TOP.CTRL1 is equal to 1 and
TOP>CTRL2 is equal to 0.

leda> set_power_domain_ctrl -name POW1 -signals {TOP.CTRL1 TOP.CTRL2}
 10

For more information, see the Leda Power Rules Guide.

set_power_off_value
Some low-power methodologies impose the output of isolation cells to be set to a
specific fixed value (0 or 1) when the corresponding power domain is switched off. Use
the set_power_off_value command to specify this fixed value for any isolation cell
instance.

June 2006 Synopsys, Inc. 251

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Syntax
set_power_off_value boolean_value {isolation_cell_instance_list}

Example
leda> set_power_off_value 0 TOP.A.ISCEL3

For more information, see the Leda Power Rules Guide.

set_power_switch
Use the set_power_switch command to specify the cell list as power switch cells.

Syntax
set_power_switch cell_name_list

Arguments
cell_name_list Specifies the cell list.

sizeof_collection
Use the sizeof_collection command to get the number of objects in a collection.

Syntax
sizeof_collection collection1

Arguments
collection1 Specifies the collection for which to get the number of objects.

If an empty collection (empty string) is used for the
collection1 argument, the command returns 0.

sort_collection
Use the sort_collection command to sort a collection based on one or more attributes,
resulting in a new, sorted collection. The sort is ascending by default.

Syntax
sort_collection [-descending] collection1 criteria

Arguments
-descending Indicates that the collection is to be sorted in reverse order. By

default, the sort proceeds in ascending order.

collection1 Specifies the collection to be sorted.

252 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

criteria Specifies a list of one or more application or user-defined
attributes to use as sort keys.

June 2006 Synopsys, Inc. 253

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Project Tcl Command Reference
Following is command reference information for the built-in Tcl commands that you can
use to manage Leda project files. To see the help for all project_* commands
implemented in Leda, use the help -v switch from the Tcl prompt in the Tcl console at
the bottom of the GUI or in the Tcl shell when you are not running the GUI:

leda> help -v project_*

project_add_library
Use the project_add_library command to add a logical or physical library to the current
project. This command does not return a value when it completes successfully.

Syntax
project_add_library [-read] -library_s library_name

Arguments
-read Get available files from this library.

-library_s Specify the full path to the logical or physical library_name.

Example
The following example adds the lib1.vhd library to the current project.

leda> project_add_library -library /u/me/work/lib1.vhd

254 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

project_build
Use the project_build command to read and compile the current project files.

Syntax
project_build

Arguments
None.

Example
The following example builds the current project. The returned value of 0 at the bottom
of the transcript indicates a successful build.

leda> project_build
Building project...
Reading file /d/techpub1/docmaster/leda/leda403_software/test/mixed/src/
reg.v
Reading file /d/techpub1/docmaster/leda/leda403_software/test/mixed/src/
shift_reg.v
Reading file /d/techpub1/docmaster/leda/leda403_software/test/mixed/src/
stage2.v
Reading file /d/techpub1/docmaster/leda/leda403_software/test/mixed/src/
topunit.v
Compiling Module Declaration simple_reg
Compiling Module Declaration shift_reg
Compiling Module Declaration stage2
Compiling Module Declaration top
Compiling Entity Declaration MISC_LOGIC
Compiling Architecture DATAFLOW of MISC_LOGIC
Compiling Entity Declaration STAGE1
Compiling Architecture RTL of STAGE1
Building project done
0

June 2006 Synopsys, Inc. 255

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

project_delete
Use the delete command to delete a project from disk (by default, the current project).

Syntax
 project_delete [-project_name project_name]

Arguments
-project_name If you don’t specify a project_name, this command deletes the

current project by default.

Example
The following example deletes a project that is not the current project.

leda> project_delete -project_name example.pro

project_get_all_files
Use the project_get_all_files command to get a list of all files in the specified library.

Syntax
project_get_all_files -work library_name -format language

Arguments
-work Specify the library_name.

-format Set the language. Legal values include verilog and vhdl.

Returned Values
Returns a list of library file names for the specified library name and language.

Example
The following example returns a list of Verilog files from the LEDA_WORK library for
the Demo project that comes with the tool.

leda> project_get_all_files -work LEDA_WORK -format verilog
/d/techpub1/docmaster/leda/leda403_software/test/mixed/src/reg.v
/d/techpub1/docmaster/leda/leda403_software/test/mixed/src/shift_reg.v
/d/techpub1/docmaster/leda/leda403_software/test/mixed/src/stage2.v
/d/techpub1/docmaster/leda/leda403_software/test/mixed/src/topunit.v

256 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

project_get_file_attributes
Use the project_get_file_attributes command to get file attributes for a given language,
working library, file format, directory, file extension, or any combination of these.

Syntax
project_get_file_attributes [-format language] [-work library_name] \

[-file] [-directory] [-directory_file][-file_extension]

Arguments
-format Specify the language. Legal values include verilog and vhdl.

-file Returns a list of available files for the specified language.

-work Specify a working library_name.

-directory Returns a list of available directories that match the language
specified with -format.

-directory_file Returns a list of available files in the specified directory that
match the language specified with -format.

-file_extension Specify the file extension to look for (for example, v for
Verilog and vhd or vhdl for VHDL).

Returned Values
Returns a list of files for the specified language, library, directory, files, or file extension.

Example
The following example returns a list of source files from the LEDA_WORK library for
the Demo project that comes with the tool. Because this is a mixed-language project,
you see file extensions for both VHDL and Verilog in the command results.

leda> project_get_file_attributes -work LEDA_WORK -file_extension

.vhd .vhdl .v .ve .inc

June 2006 Synopsys, Inc. 257

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

project_get_library_attribute
Use the project_get_library_attribute command to get information about working
libraries and resource libraries for your project.

Syntax
project_get_library_attribute [-format language] attribute_name

Arguments
-format Set the language. Legal values include verilog and vhdl.

Default is all.

attribute_name Specify the attribute_name of interest. Legal values include
mapping, top_level_library, resource, library_directory,
library_file, library_extension, checklib, and append.

Returned Values
Returns information for the specified language and attribute_name.

Example
The following example returns the name of the top-level library in the Demo project that
ships with the tool:

leda> project_get_library_attribute top_level_library

LEDA_WORK

258 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

project_get_option_attribute
Use the project_get_option_attribute command to get information about optional
analyzer settings that may be in effect for the current project.

Syntax
project_get_option_attribute [-format language] -name attribute_name

Arguments
-format Set the language. Legal values include verilog and vhdl.

Default is all.

-name Specify the attribute_name of interest. Legal values include
no_semantic_exception, nocase, translate_directive, severity,
macro, include, and version.

Example
The following example returns a value of “warning” to let you know that messages from
the analyzer of this severity and above will be printed.:

leda> project_get_option_attribute -format verilog -name severity

warning

project_get_ports
Use the project_get_ports command to get a list all inout/out ports for a given unit.

Syntax
project_get_ports -work library_name -top unit_name

Arguments
-work Specify the library_name.

-top Specify the top-level unit_name in the design hierarchy.

Example
The following example gets a list of all inout/out ports for the LEDA_WORK library in
the Demo project that comes with the tool:

leda> project_get_ports -work LEDA_WORK -top top
clk din enb rst

June 2006 Synopsys, Inc. 259

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

project_get_top_units
Use the project_get_top_units command to get all potential top units from a given
library.

Syntax
project_get_top_units -work library_name

Arguments
-work Specify the working library_name.

Example
The following example returns a list of potential top units from the LEDA_WORK
working library:

leda> project_get_top_units -work LEDA_WORK
top DATAFLOW/MISC_LOGIC MISC_LOGIC RTL/STAGE1 STAGE1 shift_reg
simple_reg stage2

project_get_unit_kinds_from_library
Use the project_get_unit_kinds_from_library command to get a list of all unit kinds
from a given working library.

Syntax
project_get_unit_kinds_from_library working_library

Arguments
library Specify the working_library name.

Example
The following example returns a list of all unit kinds from the LEDA_WORK library in
the Demo project.

leda> project_get_unit_kinds_from_library LEDA_WORK
MODULE ENTITY

260 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

project_get_units_from_file
Use the project_get_units_from_file command to get a list of all units in a given file.

Syntax
project_get_units_from_file file_name [-format language]

Arguments
file_name Specify the file_name.

-format Set the language. Legal values include verilog and vhdl.
Default is all.

Returned Values
Returns a list of all units from the specified file.

Example
The following example returns a list of Verilog units instantiated in the top.v file.

leda> project_get_units_from_file top.v -format verilog

June 2006 Synopsys, Inc. 261

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

project_get_units_from_library
Use the project_get_units_from_library command to get a list of unit names, unit kinds,
compilation dates, obsolete flag statuses, file names, and number of lines for a given
library.

Syntax
project_get_units_from_library library_name

Arguments
library_name Specify the library_name.

Returned Values
Returns a information about the specified library.

Example
The following example returns a list of unit names, kinds, compilation dates, obsolete
flag statuses, file names, and number of lines for the LEDA_WORK library.

leda> project_get_units_from_library LEDA_WORK
{MISC_LOGIC;ENTITY;1084834151;;/d/techpub1/docmaster/leda/
leda403_software/test/mixed/src/misc_logic.vhd;1}
{STAGE1;ENTITY;1084834151;;/d/techpub1/docmaster/leda/leda403_software/
test/mixed/src/stage1.vhd;1} {DATAFLOW/
MISC_LOGIC;ARCHITECTURE;1084834151;;/d/techpub1/docmaster/leda/
leda403_software/test/mixed/src/misc_logic.vhd;13} {RTL/
STAGE1;ARCHITECTURE;1084834151;;/d/techpub1/docmaster/leda/
leda403_software/test/mixed/src/stage1.vhd;15}
{simple_reg;MODULE;1084834149;;/d/techpub1/docmaster/leda/
leda403_software/test/mixed/src/reg.v;1} {shift_reg;MODULE;1084834149;;/
d/techpub1/docmaster/leda/leda403_software/test/mixed/src/
shift_reg.v;13} {stage2;MODULE;1084834149;;/d/techpub1/docmaster/leda/
leda403_software/test/mixed/src/stage2.v;36} {top;MODULE;1084834149;;/d/
techpub1/docmaster/leda/leda403_software/test/mixed/src/topunit.v;53}

262 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

project_get_working_libraries
Use the project_get_working_libraries command to get the working libraries for the
current project.

Syntax
project_get_working_libraries

Arguments
None.

Returned Values
Returns a list of working libraries for the current project.

Example
The following example returns the working libraries for the Demo project after the user
added one:

leda> project_get_working_libraries
LEDA_WORK EIGHTADD

project_new
Use the project_new command to create an empty project and set it as the default for the
current session.

Syntax
project_new [-quiet] [project_name]

Arguments
-quiet Don’t display info messages.

project_name Specify the project_name for the new project. If you don’t
specify a project_name, Leda creates a project called leda.pro
by default.

Example
The following example creates a new Leda project called DAVEY. Note that all new
projects you create in Leda are given a .pro extension by convention.

leda> project_new DAVEY
New project DAVEY.pro done
/d/techpub1/docmaster/leda/leda403_software/DAVEY.pro

June 2006 Synopsys, Inc. 263

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

project_open
Use the project_open command to open a project.

Syntax
project_open [-quiet] [-create project_name] [-project project_name]

Arguments
-quiet Don’t display info messages.

-create Specify the project_name if it doesn’t already exist. Note that
all new projects you create in Leda are given a .pro extension
by convention.

-project Specify the project_name for an existing project. If you don’t
specify a project_name, Leda opens the Demo project that
comes with the tool by default (demo.pro).

Example
The following example creates and opens a new project named DAVEY.

leda> project_open -create DAVEY
New project DAVEY.pro done
DAVEY

project_quit
Use the project_quit command to exit a project.

Syntax
project_quit

Arguments
None.

Example
The following example exits the current project. The returned value of 0 indicates that
you quit the project successfully.

leda> project_quit

0

264 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

project_read
Use the project_read command to display the contents of a project.

Syntax
project_read [project_name]

Arguments
project_name Specify the project_name. If you don’t specify a

project_name, Leda reads a project called leda.pro by default.

Example
The following example displays information about the demo.pro project that comes with
the tool:

leda> project_read demo.pro
project_specify_files {{$LEDA_PATH/test/mixed/src}}
checker_set_design_constraints -nowarning -clockdump -top top
checker_set_design_constraints -top { LEDA_WORK top } -nowarning
-clockdump

project_record_cmd
Use the project_record_cmd command to save a sequence of Tcl project commands for a
Leda project.

Syntax
project_record_cmd

Arguments
None.

Example
The following example records a sequence of Tcl commands and saves them into a Tcl
project file.
leda> project_new test.pro

leda> proc test {} {project_record_cmd}

leda> test

leda> project_specify_files $::env(PROTON_ROOT)/test/mixed/src/reg.v

leda> project_build

leda> project_save

leda> project_quit

June 2006 Synopsys, Inc. 265

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

project_remove_file
Use the project_remove_file command to remove a file from the current project, and
optionally from the disk too.

Syntax
project_remove_file file_name -work library_name \

[-format language] [-delete]

Arguments
file_name Specify the file_name to remove.

-work Specify the working library_name for the file.

-format Set the language. Legal values include verilog and vhdl.
Default is all.

-delete Also deletes the file from the disk.

Example
The following example removes the reg.v file from the MY_LIB working library. This
command does not return a value when it completes successfully.

leda> project_remove_file -file reg.v -work MY_LIB

project_remove_library
Use the project_remove_library command to remove a library from the current project,
and optionally from the disk too.

Syntax
project_remove_library [-delete] library_name

Arguments
-delete Also deletes the library from the disk.

library_name Specify the library_name to remove.

Example
The following example removes the MY_LIB library from the current project. This
command does not return a value when it completes successfully.

leda> project_remove_library MY_LIB

266 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

project_save
Use the project_save command to save a project.

Syntax
project_save

Arguments
None.

Example
The following example saves the current project. The return value of 0 indicates that the
project was saved successfully.

leda> project_save
0

project_specify_files
Use the project_specify_files command to specify files or directories containing HDL
design files that you want to add to your project.

Syntax
project_specify_files directory_or_file [-file_extension {extensions}] \

[-work library_name][-format language]

Arguments
directory_or_file Specify a directory_or_file name that you want to add to your

project.

-file_extension If you specified a directory for the directory_or_file argument,
use this option to specify the file extensions that you want to
include (e.g., v, vhd, etc.).

-work Specify the working library_name.

-format Set the language. Legal values include verilog and vhdl.
Default is all.

Example
The following example adds the reg.v file the MY_LIB working library.

leda> project_specify_files $LEDA_PATH/test/mixed/src/reg.v -work MY_LIB
Reading file reg.v (no check)

June 2006 Synopsys, Inc. 267

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

project_specify_libraries
Use the project_specify_libraries command to specify working libraries and resource
libraries that you want to add to your project.

Syntax
project_specify_libraries [-format language]\

[-mapping {logical_name physical_name}] \
[-top_level_library {logical_name | physical_name}] \
[-resource {logical_name physical_name}] [-append]\
[-library_directory {library_directory}] \
[-library_file {library_file}] \
[-library_extension {library_extension}] \
[-checklib {[library_dir | library_file]} \
[-format language]

Arguments
-format Set the language. Legal values include vhdl and verilog.

Default is all.

-mapping Specify the mapping between the logical and physical names
of the library.

-top_level_library Specify the logical or physical name for the top-level library
in the design.

-resource For VHDL only, specify the name of a resource library. You
need to specify a logical name for the library. The resource
library you specify with this option replaces the existing
resource library list. If you want to add a resource library to
the existing list, use the -append switch too.
Note: the physical_name must be specified as full path.

-append For VHDL only. Use with the -resource option to add the
resource library name to the existing list of resource libraries.

-library_directory For Verilog only, specify the name of the library_directory.

-library_file For Verilog only, specify the name of a library_file.

-library_extension For Verilog only, specify the extension for files in the library.

-checklib For Verilog only, specify library directories or files to be
checked.

268 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

Example
The following example maps the my_lib1 logical library to the golden.v physical library
and identifies the top-level-library as top_lib.v.

leda> project_specify_libraries -format verilog \
-mapping {my_lib1 golden.v} \
-top_level_library {top_lib.v} \
-library_directory {/u/me/my_lib1} \
-library_extension {.v}

project_specify_name
Use the project_specify_name command to set a name for a Leda project.

Syntax
project_specify_name project_name

Arguments
project_name Use the project_name argument to set the name for the project.

Example
The following example sets up a name of proj1 for the current project:

leda> project_specify_name proj1
/d/techpub1/docmaster/leda/leda403_software/proj1.pro

June 2006 Synopsys, Inc. 269

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

project_specify_options
Use the project_specify_options command to specify the analyzer options that you want
Leda to use.

Syntax
project_specify_options -format language [-no_semantic_exception] \

[-nocase] [-translate_directive] [-severity level] \
[-macro {macro[=val]}] [-include {directory_name}] \
[-version version]

Arguments
-format Set the language. Legal values include vhdl and verilog.

Default is all.

-no_semantic_exception Use this switch to disable semantic exceptions in the
analyzer.

-nocase Use this switch to disable case sensitivity.

-translate_directive Use this switch to make the analyzer honor Synopsys
translate_off and translate_on pragmas in your HDL
source files.

-severity Specify the severity level for which you want to see messages
from the analyzer. You get the selected severity level
and above. Legal values include note, warning, error,
and fatal.

-macro Verilog only. Specify the value (val) for a macro previously
defined in your custom or prepackaged rules.

-include Set the directory_name to search for include files.

-version Set the version for the analyzer. Legal values include 95, 01
(Verilog 2001), and 03 (SystemVerilog) for Verilog,
and 87 and 93 for VHDL.

Example
The following example specifies that the Verilog analyzer use the Verilog 95 standard
for analysis. This command does not return a value when it completes successfully.

leda> project_specify_options -format verilog -version 95

project_update
Use the project_update command to update the current project if you made changes to
any of the HDL files that you are testing with Leda.

270 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

Syntax
project_update [-force]

Arguments
-force Use this switch to force a rebuild of the entire design, not just the

parts that changed.

Example
The following example updates the current project. The return value of 0 indicates that
the project updated successfully.

leda> project_update

0

June 2006 Synopsys, Inc. 271

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Checker Tcl Command Reference
Following is command reference information for the built-in Tcl commands that you can
use to run the Leda Checker. These commands allow you to develop and store sequences
of actions for unattended runs with the tool, such as regression tests. To see the help for
all checker_* commands implemented in Leda, use the help -v switch from the Tcl
prompt in the Tcl console at the bottom of the GUI or in the Tcl shell when you are not
running the GUI:

leda> help -v check_*

You can store your Leda Tcl commands in a .tcl file, and source that file from the Leda
Tcl shell to implement your stored procedures (see “Sourcing a Tcl Script in Leda” on
page 188).

check
Use the check command to run the tool on the current project (HDL source files) using
the specified run options. You must have the appropriate rules selected for checking in
your configuration (block, chip, netlist) in order to get any results. For example, to run
the netlist checker you must have some netlist checker rules selected. If you execute the
check command without specifying any options, Leda runs the Checker using the last
values for any options already set in that session.

Syntax
check [-format language] [-work library_name] [-block] [-chip] \

[-netlist] [-sdc][-nocheck] [-propagate] [-config file_name] \
[-policy policy_name] [-ruleset ruleset_name] [-rule rule_name] \
[-nowarning] [-top {[library_name] top_unit_name}] \
[-noelaboration] [-case_analysis_file file_name] [-nohierdump] \
[-clockdump] [-test_clk_rising clock_name] \
[-test_clk_falling clock_name] [-test_async reset_name] \
[-test_async_inverted reset_name] [-max_violations number] \
[-nohierdump limit] [rule_name] \
[+max_case+<val>] \
[+max_casexz+<val>]

Arguments
-format Selects the language for rule checking. Valid values include

verilog and vhdl. If you don’t specify either option, Leda
checks selected rules for both Verilog and VHDL by default.

-work Specify a working library_name.

272 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-block All checks are enabled by default starting with version 4.1.
Use the -block switch if you want to run only block-level
checks. These are unit-wide checks (for example,
language-based checks).

-chip All checks are enabled by default starting with version 4.1.
Use the -chip switch if you want to run only chip-level checks.
These are unit-wide checks that use hardware inference at the
RTL level (for example, all flip-flops in the design must be
active on the rising edge).

-netlist All checks are enabled by default starting with version 4.1.
Use the -netlist switch if you want to run only netlist checks.
These checks run on the gate-level design netlist.

-sdc All checks are enabled by default starting with version 4.1.
Use the -sdc switch if you want to run only SDC checks. For
more information, see “Using the SDC Checker” on page 133.

-nocheck Elaborates the design but doesn’t run any rule checks.

-propagate Enables constant propagation. See the -case_analysis_file
option for this command.

-config Specify the full path to the configuration file that you want to
use for this run with the tool.

-policy Specify a policy_name that you want to check. If you use this
option, Leda ignores rule selections specified in your current
configuration.

-ruleset Specify a ruleset_name that you want to check. If you use this
option, Leda ignores rule selections specified in your current
configuration.

-rule Specify a rule_name for a rule that you want to check. If you
use this option, Leda ignores rule selections specified in your
current configuration.

rule_name Same as -rule (above).

-nowarning Only relevant for chip-level checks. Use the -nowarning
switch to suppresses warning messages generated during
compilation and elaboration.

-top Use the -top option to specify the top_unit_name or
library_name for your design hierarchy. This is required in
order to check for chip-level rule violations.

June 2006 Synopsys, Inc. 273

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-noelaboration Do not force re-elaboration if it is not necessary.

-case_analysis_file Use the -case_analysis_file option to point Leda to an ASCII
text file containing set_case_analysis commands that specify
constant values for primary inputs or internal signals used in
constant propagation. For more information, see “Propagating
Constants” on page 96.

-nohierdump Use the -nohierdump switch to turn off generation of the
hierarchy browsing database. Optionally, also specify a limit
for the hierarchy dump instead of a full disable. This speeds up
tool performance, but disables the hierarchy browser in the
GUI after a Checker run.

-clockdump Use the -clockdump switch to enable use of the Clock and
Reset Tree browsers when you load a log file into the Error
Viewer after checking your design. Note that this switch can
slow Leda’s performance when checking large netlists. See
“Using the Clock and Reset Tree Browsers” on page 126.

-test_clk_rising Use the -test_clk_rising option to specify test clock signal
clock_name and specify that the first edge in this clock’s cycle
is the rising edge. With RTLDRC©, this corresponds to the
following command:

create_test_clk CLK -w{N1 N1+N2}

In Leda’s DFT checks, no delays are taken into account. Leda
always assumes that the test clock period is 100 ns and the
strobe point occurs at 95 ns (default RTLDRC© values). Leda
also assumes that all test clock events occur before this strobe
point.

Note: The -test_clk_rising option expects the CLK argument
to be a primary I/O name, not a hierarchical name including
the top module name. Internal signals are not allowed.

-test_clk_falling Use the -test_clk_falling option to specify test clock signal
clock_name and specify that the first edge in this clock’s cycle
is the falling edge. With RTLDRC©, this corresponds to the
following command:

create_test_clk CLK -w{N1 N1-N2}

274 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

In Leda’s DFT checks, no delays are taken into account. Leda
always assumes that the test clock period is 100 ns and the
strobe point occurs at 95 ns (default RTLDRC© values). Leda
also assumes that all test clock events occur before this strobe
point.

Note: The -test_clk_falling option expects the CLK argument
to be a primary I/O name, not a hierarchical name including
the top module name. Internal signals are not allowed.

-test_async Use the -test_asynch option to specify the test reset signal
reset_name and indicate that it is active on “1” and has a hold
value of “0” during the scan shift phase. With RTLDRC©, this
corresponds to the following command:

set_signal_type test_asynch RST

-test_async_inverted Use the -test_asynch_inverted option to specify the test reset
signal reset_name and specify that it is active on “0” and has a
hold value of “1” during the scan shift phase. With
RTLDRC©, this corresponds to the following command:

set_signal_type test_asynch_inverted RST

-max_violations Use the -maxviolations option to set the maximum number of
violations per selected rule that Leda flags. The default is 100.

+max_case+<val> Use the +max_case option to specify the maximum width of a case
expression in a case statement. The default value is 8.

+max_casexz+<val> Use the +max_casexz option to specify the maximum width of a
case expression in a casex/casez statement. The default value is 8.

June 2006 Synopsys, Inc. 275

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Example
The following example runs all chip-level and block-level rules selected in the current
configuration:

leda> check top top
Executing elaboration of top unit top ...
Elaboration of top unit top completed.
Dumping the design hierarchy...
Design hierarchy dump completed.
Executing chip-level checks on design top ...
Chip-level checks on design top completed.
Executing block-level checks on library LEDA_WORK ...
Executing block-level checks on unit LEDA_WORK.simple_reg ...
Executing block-level checks on unit LEDA_WORK.shift_reg ...
Executing block-level checks on unit LEDA_WORK.stage2 ...
Executing block-level checks on unit LEDA_WORK.top ...
Executing block-level checks on library LEDA_WORK ...
Executing block-level checks on unit LEDA_WORK.MISC_LOGIC ...
Executing block-level checks on unit LEDA_WORK.STAGE1 ...
Executing block-level checks on unit LEDA_WORK.DATAFLOW/MISC_LOGIC ...
Executing block-level checks on unit LEDA_WORK.RTL/STAGE1 ...

276 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

checker_get_design_constraints
Use the checker_get_design_constraints command to see information that the Checker
is using for your runs with the tool. These options control the behavior of the tool and
can affect runtime performance and the features that are enabled. You must specify an
attribute name for this command to work.

Syntax
checker_get_design_constraints attribute_name

Arguments
attribute_name Specify an attribute_name. Legal values for attribute_name

include blast, nowarning, top, noelaboration, constraint_file,
nohierdump, maxhierdump, forcehierdump, test_clk_rising,
test_clk_falling, test_async, test_async_inverted,
max_violations, and nomaxviolations. For information on
what these attributes control during a Checker run, see
propagate .

Example
The following example returns the value set for max_violations, which sets the
maximum number of errors that Leda flags for any one rule selected for checking. The
current setting for this design is 100, which is the default:

leda> checker_get_design_constraints max_violations
100

checker_get_options
Use the checker_get_options command to return information on the types of checks
Leda is configured to execute on the next run with the tool.

Syntax
checker_get_options [-format language] [-block] [-chip] [-netlist]

[-sdc]

Arguments
-format Returns the language for rules selected for checking. If you

have rules that apply to both Verilog and VHDL selected for
checking in your current configuration (very common, even if
you are not checking a mixed-language design), this option
returns both HDL names.

June 2006 Synopsys, Inc. 277

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-block Returns true (1) if block-level rule checking is enabled. It is
enabled by default.

-chip Returns true (1) if chip-level rule checking is enabled. It is
enabled by default.

-netlist Returns true (1) if netlist checks are enabled. It is enabled by
default.

-sdc Returns true (1) if the Synopsys Design Constraint (SDC)
checker is enabled. It is not enabled by default.

Example
The following example returns true (1) on the current project for chip-level checks,
block-level checks, and netlist checks because they are all enabled by default:

leda> checker_get_options -chip -block -netlist
1 1 1

278 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

checker_set_design_constraints
Use the checker_set_design_constraints command to set information that the Checker
uses for your next run with the tool. These options control the behavior of the tool and
can affect runtime performance and the features that are enabled. Many of these options
do the same things in Tcl shell mode as they do in batch mode (see “Common
Command-Line Options and Switches” on page 148).

Syntax
checker_set_design_constraints [-nowarning] \

[-top {[library_name] [top_unit_name]} [-case_analysis_file
file_name] [-case_analysis file_name] [-nohierdump] [-maxhierdump
[limit]][-forcehierdump] [-clockdump]
[-noclockdump][-test_clk_rising {clock_name}]\
[-test_clk_falling {clock_name}] [-test_async {reset_name}] \
[-test_async_inverted {reset_name}] [-max_violations number] \
[-nomaxviolations]

Arguments
-nowarning Use the -nowarning switch to suppresses warning messages

generated during compilation and elaboration.

-top Use the -top option to specify the top_unit_name or
library_name of your design hierarchy. This is required in
order to check for chip-level rule violations.

-case_analysis_file Use the -case_analysis_file option to point Leda to an ASCII
text file containing set_case_analysis commands that specify
constant values for primary inputs or internal signals. For
more information, see “Propagating Constants” on page 96.

-nohierdump Use the -nohierdump switch to turn off generation of the
hierarchy browsing database. Optionally, also specify a limit
for the hierarchy dump instead of a full disable.

-maxhierdump Use the -maxhierdump switch to disable generation of the
hierarchy browsing database beyond limit levels off hierarchy.
This speeds up tool performance, but limits the hierarchy
browser in the GUI after a Checker run.

-forcehierdump Enable full generation of the hierarchy browsing database.

-clockdump In -full_log mode, use the -clockdump switch to enable use of
the Clock and Reset Tree browsers when you load a log file
into the Error Viewer after checking your design. Note that

June 2006 Synopsys, Inc. 279

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

this switch can slow Leda’s performance when checking large
netlists. See “Using the Clock and Reset Tree Browsers” on
page 126.

-noclockdump Use the -noclockdump switch to disable generation of the
clock and reset browser.

-test_clk_rising Use the -test_clk_rising option to specify test clock signal
clock_name and specify that the first edge in this clock’s cycle
is the rising edge. With RTLDRC©, this corresponds to the
following command:

create_test_clk CLK -w{N1 N1+N2}

In Leda’s DFT checks, no delays are taken into account. Leda
always assumes that the test clock period is 100 ns and the
strobe point occurs at 95 ns (default RTLDRC© values). Leda
also assumes that all test clock events occur before this strobe
point.

Note: The -test_clk_rising option expects the CLK argument
to be a primary I/O name, not a hierarchical name including
the top module name. Internal signals are not allowed.

-test_clk_falling Use the -test_clk_falling option to specify test clock signal
clock_name and specify that the first edge in this clock’s cycle
is the falling edge. With RTLDRC©, this corresponds to the
following command:

create_test_clk CLK -w{N1 N1-N2}

In Leda’s DFT checks, no delays are taken into account. Leda
always assumes that the test clock period is 100 ns and the
strobe point occurs at 95 ns (default RTLDRC© values). Leda
also assumes that all test clock events occur before this strobe
point.

Note: The -test_clk_falling option expects the CLK argument
to be a primary I/O name, not a hierarchical name including
the top module name. Internal signals are not allowed.

-test_async Use the -test_asynch option to specify the test reset signal
reset_name and indicate that it is active on “1” and has a hold
value of “0” during the scan shift phase. With RTLDRC©, this
corresponds to the following command:

set_signal_type test_asynch RST

280 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-test_async_inverted Use the -test_asynch_inverted option to specify the test reset
signal reset_name and specify that it is active on “0” and has a
hold value of “1” during the scan shift phase. With
RTLDRC©, this corresponds to the following command:

set_signal_type test_asynch_inverted RST

-max_violations Use the -maxviolations option to set the maximum number of
violations per selected rule that Leda flags. The default is 100.

-nomaxviolations Use the -nomaxviolations switch to remove any limitations on
the number of violations per selected rule that Leda flags. The
default is 100.

Example
The following example sets the maximum number of errors that Leda flags for any one
rule selected for checking to 50. This command does not return a value when it
completes successfully.

leda> checker_set_design_constraints -max_violations 50

checker_set_options
Use the checker_set_options command to set up the kinds of checks you want to run in
the tool. You must have the appropriate rules selected for checking in your configuration
(block, chip, netlist) in order to get any results. For example, to run the netlist checker
you must have some netlist checker rules selected.

Syntax
checker_set_options [-format language] [-block] [-chip] [-netlist][-sdc]

Arguments
-format Selects the language for rule checking. Valid values include

verilog and vhdl.

-block All checks are enabled by default. Use the -block switch if you
want to run only block-level checks. These are unit-wide
checks (for example, language-based checks).

-chip All checks are enabled by default. Use the -chip switch if you
want to run only chip-level checks. These are unit-wide
checks that use hardware inference at the RTL level (for
example, all flip-flops in the design must be active on the
rising edge).

June 2006 Synopsys, Inc. 281

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-netlist All checks are enabled by default. Use the -netlist switch if
you want to run only netlist checks. These checks are run on
the gate-level design netlist.

-sdc All checks are enabled by default. Use the -sdc switch if you
want to run only SDC checks. These are checks on Synopsys
Design Constraint files (see “Using the SDC Checker” on
page 133).

Example
The following example sets the format to Verilog for the next run with the Checker. This
command does not return a value when it completes successfully.

leda> checker_set_options -format verilog

282 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

current_design
Use the current_design command to define the design.

Syntax
current_design [-work library_name] [-nowarning] \

[-top {[library_name] [top_unit_name]} [-case_analysis_file
file_name] [-nohierdump] [-maxhierdump [limit]][-forcehierdump] \
[-clockdump] [-noclockdump]

Arguments
-nowarning Use the -nowarning switch to suppresses warning messages

generated during compilation and elaboration.

-top Use the -top option to specify the top_unit_name or
library_name of your design hierarchy. This is required in
order to check for chip-level rule violations.

-case_analysis_file Use the -case_analysis_file option to point Leda to an ASCII
text file containing set_case_analysis commands that specify
constant values for primary inputs or internal signals. For
more information, see “Propagating Constants” on page 96.

-nohierdump Use the -nohierdump switch to turn off generation of the
hierarchy browsing database. Optionally, also specify a limit
for the hierarchy dump instead of a full disable.

-maxhierdump Use the -maxhierdump switch to disable generation of the
hierarchy browsing database beyond limit levels of hierarchy.
This speeds up tool performance, but limits the hierarchy
browser in the GUI after a Checker run.

-forcehierdump Enable full generation of the hierarchy browsing database.

-clockdump Use the -clockdump switch to enable use of the Clock and
Reset Tree browsers when you load a log file into the Error
Viewer after checking your design. Note that this switch can
slow Leda’s performance when checking large netlists. See
“Using the Clock and Reset Tree Browsers” on page 126.

-noclockdump Use the -noclockdump switch to disable generation of the
clock and reset browser.

-work If there is more than one working library defined for the
current project, you must specify a working library_name;
otherwise this is optional.

June 2006 Synopsys, Inc. 283

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Example
The following example specifies that top is the top-level unit and elaborates the design,
but does not run any checks. This command does not return a value when it completes
successfully.

leda> current_design top

elaborate
Use the elaborate command to elaborate the design. This is required before you can use
any of the DQL netlist query commands documented in the Leda Tcl Interface Guide.
Before you run the elaborate command, run the Leda Checker at least once on your
design. This command does the same thing as the propagate command.

Syntax
elaborate [-work library_name] [-netlist][-nowarning] \

[-top {[library_name] [top_unit_name]} [-case_analysis_file
file_name] [-nohierdump] [-maxhierdump limit][-forcehierdump] \
[-clockdump] [-noclockdump]

Arguments
-netlist Use the -netlist switch to enable checking of design netlist

rules.

-nowarning Use the -nowarning switch to suppresses warning messages
generated during compilation and elaboration.

-top Use the -top option to specify the top_unit_name or
library_name of your design hierarchy. This is required in
order to check for chip-level rule violations.

-case_analysis_file Use the -case_analysis_file option to point Leda to an ASCII
text file containing set_case_analysis commands that specify
constant values for primary inputs or internal signals. For
more information, see “Propagating Constants” on page 96.

-nohierdump Use the -nohierdump switch to turn off generation of the
hierarchy browsing database. Optionally, also specify a limit
for the hierarchy dump instead of a full disable.

-maxhierdump Use the -maxhierdump switch to disable generation of the
hierarchy browsing database beyond limit levels off hierarchy.
This speeds up tool performance, but limits the hierarchy
browser in the GUI after a Checker run.

-forcehierdump Enable full generation of the hierarchy browsing database.

284 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-clockdump Use the -clockdump switch to enable use of the Clock and
Reset Tree browsers when you load a log file into the Error
Viewer after checking your design. Note that this switch can
slow Leda’s performance when checking large netlists. See
“Using the Clock and Reset Tree Browsers” on page 126.

-noclockdump Use the -noclockdump switch to disable generation of the
clock and reset browser.

-work Specify a working library_name.

Example
The following example specifies that top is the top-level unit and elaborates the design,
but does not run any checks:

leda> elaborate -top top
Executing elaboration of top unit top ...
Elaboration of top unit top completed.
Dumping the design hierarchy...
Design hierarchy dump completed.

June 2006 Synopsys, Inc. 285

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

link
Use the link command to elaborate the design. This is required before you can use any
of the DQL netlist query commands documented in the Leda Tcl Interface Guide. Before
you run the link command, run the Leda Checker at least once on your design. This
command does the same thing as the propagate command.

Syntax
link [-work library_name] [-netlist] [-nowarning] \

[-top {[library_name] [top_unit_name]} [-case_analysis_file
file_name] [-nohierdump] [-maxhierdump limit][-forcehierdump] \
[-clockdump] [-noclockdump]

Arguments
-netlist Use the -netlist switch to enable checking of design netlist

rules.

-nowarning Use the -nowarning switch to suppresses warning messages
generated during compilation and elaboration.

-top Use the -top option to specify the top_unit_name or
library_name of your design hierarchy. This is required in
order to check for chip-level rule violations.

-case_analysis_file Use the -case_analysis_file option to point Leda to an ASCII
text file containing set_case_analysis commands that specify
constant values for primary inputs or internal signals. For
more information, see “Propagating Constants” on page 96.

-nohierdump Use the -nohierdump switch to turn off generation of the
hierarchy browsing database. Optionally, also specify a limit
for the hierarchy dump instead of a full disable.

-maxhierdump Use the -maxhierdump switch to disable generation of the
hierarchy browsing database beyond limit levels of hierarchy.
This speeds up tool performance, but limits the hierarchy
browser in the GUI after a Checker run.

-forcehierdump Enable full generation of the hierarchy browsing database.

-clockdump Use the -clockdump switch to enable use of the Clock and
Reset Tree browsers when you load a log file into the Error
Viewer after checking your design. Note that this switch can
slow Leda’s performance when checking large netlists. See
“Using the Clock and Reset Tree Browsers” on page 126.

286 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-noclockdump Use the -noclockdump switch to disable generation of the
clock and reset browser.

-work Specify a working library_name.

Example
The following example specifies that top is the top-level unit and elaborates the design,
but does not run any checks:

leda> link -top top
Executing elaboration of top unit top ...
Elaboration of top unit top completed.
Dumping the design hierarchy...
Design hierarchy dump completed.

propagate
Use the propagate command to propagate values set with set_case_analysis commands
in your SDC file. Before you propagate values, use the propagate command to apply
them to the elaborated database.

Syntax
propagate -case_analysis

Arguments
-case_analysis Use the -case_analysis switch to propagate values set in

set_case_analysis commands in the SDC file.

Example
The following example does not return any values when it completes successfully:

leda> set_case_analysis 1 test_in #sets a value to a port
leda> read_constraints my.sdc #reads some SDC constraints
leda> sdc_apply -case_analysis \
#sets values to ports/pins as indicated by any set_case_analysis
commands in my.sdc
leda> propagate #propagates the values set on pins through the design

June 2006 Synopsys, Inc. 287

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

read_constraints
Use the read_constraints command to read a Synopsys Design Constraint (SDC) file
into an internal database used by the SDC Checker. This command does not source the
SDC file. Note that Leda parses application-specific SDC commands (e.g., for
PrimeTime and Design Compiler) but does no further processing for them. Read in SDC
files in top-down order (that is, read files containing declarations before reading files
that use those declarations). For information on how to use the SDC Checker, see
“Using the SDC Checker” on page 133. For a detailed list of the supported SDC file
commands, see “Supported SDC File Tcl Commands” on page 137.

Syntax
read_constraints file_name [-block instance_name sdc_block_file_name]\

[-for_equivalency]

Arguments
-block Use the -block switch to specify a block-level constraint file of

a design to check.

instance_name Specify the instance name that is instantiated inside the top
module.

file_name Specify the SDC file_name of the top module of the design to
check.

-for_equivalency Use the -for_equivalency switch to access the equivalency
checks

Example
The following example illustrates the usage of above commands:

leda> read_verilog test.v
leda> elaborate -top TOP #elaborating the top module "TOP"
leda> read_constraints top.sdc #reading the top level constraint file
leda> read_constraints -block B1 B1.sdc #reading the constraint file of
 #block B1
leda> read_constraints -block B2 B2.sdc #reading the constraint file of
 #block B2
leda> check -sdc -config

288 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

The following example illustrates the usage of -for_equivalency switch:
leda> read_verilog -f files.list
leda> elaborate -top TOP #elaborating the top module "TOP"
leda> read_constraints SDC1.tcl
leda> read_constraints -for_equivalency SDC2.tcl
leda> check -sdc -config sdc_eqv_rules.tcl

For more information, see the Leda Constraints Rules Guide.

June 2006 Synopsys, Inc. 289

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

read_files
Use the read_files command to compile Verilog or VHDL source files. This command
compiles the files, but does not check them. This command is equivalent to using leda -c
in batch mode. When you use this command, Leda analyzes the code for compatibility
with Verilog or VHDL syntax and semantics.

Syntax
read_files file_names [-project project_name][-f file_name] \

[-files file_name] [-netlist_reader file_name] [-lang LANG] \
[-format language] [-mk] [-mkk] [-max_violations number] \
[-nowarning] [-work library_name] [-translate_directive] \
[-severity level] [-v library_file] [-y library_dir] \
[+checklib+<libname>] [+define+macro [=val]] [+libext{+.string}]\
[+incdir {+directory}] [+v2k] [+sv] [-sverilog] \
[-nochecklib library_name]

Arguments
file_names Specify the Verilog or VHDL file_names to compile.

-project Specify the project_name to associate the files with.

-f Verilog only. Use the -f option to specify a command file
(file_name) that lists Verilog files and any other
options that you want to specify.

-files VHDL only. Use the -files option to specify that all VHDL
files to be analyzed and checked are listed in the text
file file_name. If you use this option in conjunction
with the -project option, a #Files or #Dirs clause in the
file indicated by the file_name argument must contain
the library name.

-lang Use the -lang option to select the LANG mode to use when
analyzing code. This option can take one of the
following values:

•87—analyzed using VHDL 87 syntax and semantics.

•87e—analyzed using VHDL 87 syntax and
semantics, with some semantic exceptions.

•93—analyzed using VHDL 93 syntax and semantics.

•93e—analyzed using VHDL 93 syntax and
semantics, with some semantic exceptions. This is the
default for VHDL.

290 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

•95—analyzed using syntax and semantics specified
in the Verilog LRM.

•95e—analyzed as Verilog 95, but with some
commonly used semantic exceptions. Emulates
analyzers that do not conform to the Verilog LRM.
This is the default for Verilog.

-format Specify the language. Legal values include vhdl and verilog.
Default is all.

-mk VHDL only. Use the -mk switch to make Leda automatically
deduce the compilation order for VHDL source files.

-mkk VHDL only. Same as -mk, but continues if there is a syntax
error.

-max_violations Use the -max_violations option to set the maximum number of
violations per selected rule that Leda flags. The default
is 100.

-netlist_reader Use the -netlist_reader option to invoke the netlist reader.

-nowarning Use the -nowarning switch to suppresses warning messages
generated during compilation and elaboration.

-work Use the -work option to specify the name of the working
library into which all files will be compiled. The
default working library is LEDA_WORK. You specify
the physical location of the logical library in a file
called plibs (see “Using plibs to Set Library Logical/
Physical Mapping” on page 146). If you do not specify
the -work option, Leda analyzes the plibs file to see if
there is a physical library mapped to the logical name
WORK. If not, the library .leda_work is used. If the
plibs file contains no physical location for this library,
Leda creates it locally.

-translate_directive Use the -translate_directive switch to make Leda ignore code
between Synopsys synthesis off/on and translate off/on
compiler directives.

June 2006 Synopsys, Inc. 291

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-severity Specify the severity level for which you want to see messages
from the analyzer. You get the selected severity level
and above. Legal values include note, warning, error,
and fatal.

-v Verilog only. Use the -v option to specify a library_file. The
Checker scans each library file for module definitions
and tries to resolve all unresolved module instances in
the Verilog source files.

Note: This option works just like the VCS -v option, except
that Leda does not include modules coming from files
specified after -v unless you also use the +checklib
option.

-y Verilog only. Use the -y option to specify a library_directory
that contains Verilog source files. The Checker scans
the files in each library directory for module
declarations and tries to resolve all unresolved module
instances in the Verilog source files. This option work
for files containing more than one module.

+checklib+<libname>Verilog only. If libname refers to a directory specified with -y,
Leda includes all modules found in that directory.

+define+macro [=val]Verilog only. Use the +define option to define the macro and
assign val to it.

+libext{+.string} Verilog only. Use the +libext option to specify file extensions
for files in library directories (see option y). You can
only use one libext clause on the command line. The
default file extensions for the -y option are .v and .V.

+incdir {+directory} Verilog only. Use the +incdir option to specify the directories
to be searched for included files.

+v2k Verilog only. Use the +v2k switch to make Leda parse and
check language compliance for supported Verilog 2001
constructs. For information on current supported
constructs, see “Verilog 2001 Support” on page 65.

Note: This is the same switch used with the Synopsys VCS
simulator.

+sv Verilog only. Use the +sv switch to make Leda parse and
check language compliance for SystemVerilog.

292 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-sverilog Use the -sverilog switch to make Leda parse and check
language compliance for SystemVerilog. This works
the same way as -sverilog, but is present for
compatibility with the VCS command line.

-nochecklib VHDL only. Specify VHDL resource libraries that you don’t
want Leda to check for errors.

Example
The following example reads the eightadd.v Verilog source file. This command does not
return a value when it completes successfully.

leda> read_files /u/me/Verilog/eightadd.v -format verilog

June 2006 Synopsys, Inc. 293

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

read_sverilog
Use the read_sverilog command to compile SystemVerilog source files. This command
compiles the files, but does not check them. When you use this command, Leda
analyzes the code for compatibility with SystemVerilog syntax and semantics.

Syntax
read_sverilog file_names [-project project_name] [-f file_name] \

[-netlist_reader file_name] [-u] [-work library_name] \
[-v library_file] [-nowarning][-translate_directive] \
[-max_violations number] [-severity level] [-y library_directory] \
[+checklib+<libname>] [+define+macro [=val]] [+libext{+.string}] \
[+incdir {+directory}] [-nowarning]

Arguments
file_names Specify the file_names of SystemVerilog files to compile.

-project Specify the project_name to associate the files with.

-f Use the -f option to specify a command file (file_name) that
can list SystemVerilog files and any other options that
you want to specify.

-u Do not use case to distinguish identifier names.

-max_violations Use the -max_violations option to set the maximum number of
violations per selected rule that Leda flags. The default
is 100.

-severity Specify the severity level for which you want to see messages
from the analyzer. You get the selected severity level
and above. Legal values include note, warning, error,
and fatal.

-netlist_reader Use the -netlist_reader option to invoke the netlist reader.

-nowarning Use the -nowarning switch to suppresses warning messages
generated during compilation and elaboration.

-work Use the -work option to specify the name of the library_name
into which all files will be compiled. The default
working library is LEDA_WORK. You specify the
physical location of the logical library in a file called
plibs (see “Using plibs to Set Library Logical/Physical
Mapping” on page 146). If you do not specify the
-work option, Leda analyzes the plibs file to see if there
is a physical library mapped to the logical name

294 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

WORK. If not, the library .leda_work is used. If the
plibs file contains no physical location for this library,
Leda creates it locally.

-translate_directive Use the -translate_directive switch to make Leda ignore code
between Synopsys synthesis off/on and translate off/on
compiler directives.

-v Use the -v option to specify a library_file. The Checker scans
the library_file for module definitions and tries to
resolve all unresolved module instances in the
SystemVerilog source files. Note: This option works
just like the VCS -v option, except that Leda does not
include modules coming from files specified after -v
unless you also use the +checklib option.

-y Use the -y option to specify a library_directory that contains
SystemVerilog source files. The Checker scans the files
in each library directory for module declarations and
tries to resolve all unresolved module instances in the
SystemVerilog source files. This option work for files
containing more than one module.

+checklib+<libname>If libname refers to a directory specified with -y, Leda
includes all modules found in that directory.

+define+macro [=val]Use the +define option to define the macro and assign val to
it.

+libext{+.string} Use the +libext option to specify file extensions for files in
library directories (see option y). You can only use one
libext clause on the command line. The default file
extensions for the -y option are .v and .V.

+incdir{+directory} Use the +incdir option to specify directories to search for
included files.

Note: This is the same switch used with the Synopsys VCS
simulator.

-nowarning Use the -nowarning switch to suppresses warning messages
generated during compilation and elaboration.

June 2006 Synopsys, Inc. 295

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

Example
The following example reads a SystemVerilog source file and puts the results of the
analysis in the WORK working directory.

leda> read_sverilog -work WORK /u/me/Verilog/eightadd.sv
Reading file eightadd.sv (no check)

296 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

read_verilog
Use the read_verilog command to compile Verilog source files. This command compiles
the files, but does not check them. When you use this command, Leda analyzes the code
for compatibility with Verilog syntax and semantics.

Syntax
read_verilog file_names [-project project_name] [-f file_name] \

[-netlist_reader file_name] [-u][-lang LANG] [-work library_name] \
[-v library_file] [-nowarning][-translate_directive] \
[-max_violations number] [-severity level] [-y library_directory] \
[+checklib+<libname>] [+define+macro [=val]] [+libext{+.string}] \
[+incdir {+directory}] [+v2k] [+sv] [-sverilog] \
[-nowarning]

Arguments
file_names Specify the file_names of Verilog files to compile.

-project Specify the project_name to associate the files with.

-f Use the -f option to specify a command file (file_name) that
can list Verilog files and any other options that you
want to specify.

-u Do not use case to distinguish identifier names.

-lang Use the -lang option to select the LANG mode to use when
analyzing code. This option can take one of the
following values:

•95—analyzed using syntax and semantics specified
in the Verilog LRM.

•95e—analyzed as Verilog 95, but with some
commonly used semantic exceptions. Emulates
analyzers that do not conform to the Verilog LRM.
This is the default.

-max_violations Use the -max_violations option to set the maximum number of
violations per selected rule that Leda flags. The default
is 100.

-severity Specify the severity level for which you want to see messages
from the analyzer. You get the selected severity level
and above. Legal values include note, warning, error,
and fatal.

-netlist_reader Use the -netlist_reader option to invoke the netlist reader.

June 2006 Synopsys, Inc. 297

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-nowarning Use the -nowarning switch to suppresses warning messages
generated during compilation and elaboration.

-work Use the -work option to specify the name of the library_name
into which all files will be compiled. The default
working library is LEDA_WORK. You specify the
physical location of the logical library in a file called
plibs (see “Using plibs to Set Library Logical/Physical
Mapping” on page 146). If you do not specify the
-work option, Leda analyzes the plibs file to see if there
is a physical library mapped to the logical name
WORK. If not, the library .leda_work is used. If the
plibs file contains no physical location for this library,
Leda creates it locally.

-translate_directive Use the -translate_directive switch to make Leda ignore code
between Synopsys synthesis off/on and translate off/on
compiler directives.

-v Use the -v option to specify a library_file. The Checker scans
the library_file for module definitions and tries to
resolve all unresolved module instances in the Verilog
source files. Note: This option works just like the VCS
-v option, except that Leda does not include modules
coming from files specified after -v unless you also use
the +checklib option.

-y Use the -y option to specify a library_directory that contains
Verilog source files. The Checker scans the files in each
library directory for module declarations and tries to
resolve all unresolved module instances in the Verilog
source files. This option work for files containing more
than one module.

+checklib+<libname>If libname refers to a directory specified with -y, Leda
includes all modules found in that directory.

+define+macro [=val]Use the +define option to define the macro and assign val to
it.

+libext{+.string} Use the +libext option to specify file extensions for files in
library directories (see option y). You can only use one
libext clause on the command line. The default file
extensions for the -y option are .v and .V.

+incdir{+directory} Use the +incdir option to specify directories to search for
included files.

298 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

+v2k Use the +v2k switch to make Leda parse and check language
compliance for supported Verilog 2001 constructs (see
“Verilog 2001 Support” on page 65).

Note: This is the same switch used with the Synopsys VCS
simulator.

+sv Use the +sv switch to make Leda parse and check language
compliance for SystemVerilog (see “SystemVerilog
Support” on page 65).

-sverilog Use the -sverilog switch to make Leda parse and check
language compliance for SystemVerilog. This works
the same way as -sverilog, but is present for
compatibility with the VCS command line.

-nowarning Use the -nowarning switch to suppresses warning messages
generated during compilation and elaboration.

Example
The following example reads a Verilog source file and puts the results of the analysis in
the WORK working directory.

leda> read_verilog -work WORK /u/me/Verilog/eightadd.v
Reading file eightadd.v (no check)

June 2006 Synopsys, Inc. 299

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

read_vhdl
Use the read_vhdl command to compile VHDL source files. This command compiles
the files, but does not check them. When you use this command, Leda analyzes the code
for compatibility with VHDL syntax and semantics.

Syntax
read_vhdl file_names [-project project_name] [-lang LANG] [-mk] [-mkk] \

[-max_violations number] [-nowarning] [-translate_directive]\
[-work library_name] [-severity level]

Arguments
file_names Specify the VHDL file_names to compile.

-project Specify the project_name (a container for the VHDL source
files that you want to check).

-lang Use the -lang option to select the LANG mode to use when
analyzing code. The default is VHDL 93. This option can take
one of the following values:

•87—analyzed using VHDL 87 syntax and semantics.

•87e—analyzed using VHDL 87 syntax and semantics, with
some semantic exceptions.

•93—analyzed using VHDL 93 syntax and semantics.

•93e—analyzed using VHDL 93 syntax and semantics, with
some semantic exceptions. This is the default.

-mk Use the -mk switch to make Leda automatically deduce the
compilation order for your VHDL source files.

-mkk Same as -mk switch, except that compilation continues even if
there is a syntax error.

-max_violations Use the max_violations option to set the maximum number of
violations Leda should print per selected rule in your
configuration. The default is 100.

-nowarning Use the -nowarning switch to suppress compiler warnings.

-translate_directive Use the -translate_directive switch to make Leda ignore code
between Synopsys synthesis off/on and translate off/on
compiler directives.

300 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-work Use the -work option to specify the name of the library_name
into which all files will be analyzed. This option is ignored if
you do not specify any files on the command line. You specify
the physical location of the logical library in a file called plibs
(see “Using plibs to Set Library Logical/Physical Mapping”
on page 146). If you do not specify the -work option, Leda
analyzes the plibs file to see if there is a physical library
mapped to the logical name WORK. If not, the library
.leda_work is used. If the plibs file contains no physical
location for this library, Leda creates it locally.

-severity Specify the minimum severity level for which compiler
messages are displayed.

Example
The following example analyzes the entity.vhd VHDL source file according to the
VHDL 93 standard, with some semantic exceptions:

leda> read_vhdl -work WORK /u/me/VHDL/entity.vhd -lang 93e
Reading file entity.vhd (no check)

report
Use the report command after running Leda to get error reports on STDOUT for
individual rules or all rules selected for checking in that run with the tool. If you don’t
select one of the options, Leda prints all error reports by default.

Syntax
report [all] [rule_name]

Arguments
all Use the all argument to get error reports for all rules violated

in the last check. This is the default.

rule_name Use the rule_name argument to get a report on one particular
rule violated in the last check.

Example
The following example generates a report for rule B_3417:

leda> report B_3417
11: always @(negedge clk) q = d;

 ^

reg.v:11: STATEM> [ERROR] B_3417: Use non-blocking assignments in
sequential block

June 2006 Synopsys, Inc. 301

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

run
Use the run command to run the tool on the current project (HDL source files) using the
specified options. You must have the appropriate rules selected for checking in your
configuration (block, chip, netlist) in order to get any results. For example, to run the
netlist checker you must have some netlist checker rules selected. If you execute the run
command without specifying any options, Leda runs the Checker using the last values
for any options already set in that session. This command works just like the propagate
command.

Syntax
run [-format language] [-work library_name] [-block] [-chip]\

[-netlist][-nocheck] [-propagate] [-config file_name] \
[-policy policy_name] [-ruleset ruleset_name] [-rule rule_name] \
[-nowarning] [-top {[library_name] top_unit_name}] \
[-noelaboration] [-case_analysis_file file_name] [-nohierdump] \
[-clockdump] [-test_clk_rising clock_name] \
[-test_clk_falling clock_name] [-test_async reset_name] \
[-test_async_inverted reset_name] [-max_violations number] \
[-nohierdump limit] [+max_case+<val>] [+max_casexz+<val>]\
[-full_inf]

Arguments
-format Selects the language for rule checking. Valid values include

verilog and vhdl. If you don’t specify either option, Leda
checks selected rules for both Verilog and VHDL by default.

-work Specify a working library_name.

-block All checks are enabled by default starting with version 4.1.
Use the -block switch if you want to run only block-level
checks. These are unit-wide checks that are like traditional lint
checks (for example, language-based checks).

-chip All checks are enabled by default starting with version 4.1.
Use the -chip switch if you want to run only chip-level checks.
These are unit-wide checks that use hardware inference at the
RTL level (for example, all flip-flops in the design must be
active on the rising edge).

-full_inf This option will enable the user to display the violation
summary and the deactivated rules in the .inf file.

-netlist All checks are enabled by default starting with version 4.1.
Use the -netlist switch if you want to run only netlist checks.
These checks are run on the gate-level design netlist.

302 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-nocheck Elaborate the design but don’t run any rule checks.

-propagate Enable constant propagation. See the -case_analysis option,
which you use to point to a file that contains set_case_analysis
commands that make constant propagation work.

-config Specify the full path to the configuration file that you want to
use for this run with the tool.

-policy Specify a policy_name that you want to check. If you use this
option, Leda ignores rule selections specified in your current
configuration.

-ruleset Specify a ruleset_name that you want to check. If you use this
option, Leda ignores rule selections specified in your current
configuration.

-rule Specify a rule_label for a rule that you want to check. If you
use this option, Leda ignores rule selections specified in your
current configuration.

-nowarning Optional, and only relevant for chip-level checks. Use the
-nowarning switch to suppresses warning messages generated
during compilation and elaboration.

-top Use the -top option to specify the top_unit_name or
library_name for your design hierarchy. This is required in
order to check for chip-level rule violations.

-noelaboration Do not force re-elaboration if it is not necessary.

-case_analysis_file Use the -case_analysis_file option to point Leda to an ASCII
text file containing set_case_analysis commands that specify
constant values for primary inputs or internal signals used in
constant propagation. For more information, see “Propagating
Constants” on page 96.

-nohierdump Use the -nohierdump switch to turn off generation of the
hierarchy browsing database. Optionally, also specify a limit
for the hierarchy dump instead of a full disable. This speeds up
tool performance, but disables the hierarchy browser in the
GUI after a Checker run.

-clockdump Use the -clockdump switch to enable use of the Clock and
Reset Tree browsers when you load a log file into the Error
Viewer after checking your design. Note that this switch can
slow Leda’s performance when checking large netlists. See
“Using the Clock and Reset Tree Browsers” on page 126.

June 2006 Synopsys, Inc. 303

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-max_violations Use the -max_violations option to set the maximum number of
violations per selected rule that Leda flags. The default is 100.

+max_case+<val> Use the +max_case option to specify the maximum width of a case
expression in a case statement. The default value is 8.

+max_casexz+<val> Use the +max_casexz option to specify the maximum width of a
case expression in a casex/casez statement. The default value is 8.

Example

The following example runs all rules selected in the current configuration:
leda> run -top top
Executing elaboration of top unit top ...
Elaboration of top unit top completed.
Dumping the design hierarchy...
Design hierarchy dump completed.
Executing chip-level checks on design top ...
Chip-level checks on design top completed.

sdc_apply
Use the sdc_apply command to apply set_case_analysis data read from SDC files to the
elaborated database. After you apply the data, use the propagate command to propagate
the values,

Syntax
sdc_apply -case_analysis

Arguments
-case_analysis Use the -case_analysis switch to apply values set with

set_case_analysis commands in the SDC file.

Example
The following example does not return any values when it completes successfully:

leda> set_case_analysis 1 test_in #sets a value to a port
leda> read_constraints my.sdc #reads some SDC constraints
leda> sdc_apply -case_analysis \
#sets values to ports/pins as indicated by any set_case_analysis
commands in my.sdc
leda> propagate #propagates the values set on pins through the design

304 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

set_case_analysis
Use the set_case_analysis command to set the value of a constant that you want Leda to
propagate through the design. For information on constant propagation, see
“Propagating Constants” on page 96.

Syntax
set_case_analysis value port_or_pin_list

Arguments
value Specify the constant value. Legal values are ZERO, ONE, 0 or

1.

port_or_pin_list List the port_or_pin_list that you want held at the specified
value. Legal values include the signal name (b), hierarchical
name (top.b), or a list {a c top.b}.

Example
The following example sets the P1 signal to 0 and holds it at that value for the Checker
run.

leda> set_case_analysis 0 P1

The following example sets CNT (bus signal) to 0 and holds it at that value for the
checker run.

leda> set_case_analysis 0 CNT(0)

leda> set_case_analysis 0 CNT(1)

leda> set_case_analysis 0 CNT(2)

leda> set_case_analysis 0 CNT(3)

June 2006 Synopsys, Inc. 305

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

verify
Use the verify command to run the tool on the current project (HDL source files) using
the specified options. You must have the appropriate rules selected for checking in your
configuration (block, chip, netlist) in order to get any results. For example, to run the
netlist checker you must have some netlist checker rules selected. If you execute the
verify command without specifying any options, Leda runs the Checker using the last
values for any options already set in that session. This command does the same thing as
the propagate command.

Syntax
verify [-format language] [-work library_name] [-block] [-chip] \

[-netlist] [-nocheck] [-propagate] [-config file_name] \
[-policy policy_name] [-ruleset ruleset_name] [-rule rule_name] \
[-nowarning] [-top {[library_name] top_unit_name}] \
[-noelaboration] [-case_analysis_file file_name] [-nohierdump] \
[-clockdump] [-test_clk_rising clock_name] \
[-test_clk_falling clock_name] [-test_async reset_name] \
[-test_async_inverted reset_name] [-max_violations number] \
[-nohierdump limit]

Arguments
-format Selects the language for rule checking. Valid values include

verilog and vhdl. If you don’t specify either option, Leda
checks selected rules for both Verilog and VHDL by default.

-work Specify a working library_name.

-block All checks are enabled by default starting with version 4.1.
Use the -block switch if you want to run only block-level
checks. These are unit-wide checks that are like traditional lint
checks (for example, language-based checks).

-chip All checks are enabled by default starting with version 4.1.
Use the -chip switch if you want to run only chip-level checks.
These are unit-wide checks that use hardware inference at the
RTL level (for example, all flip-flops in the design must be
active on the rising edge).

-netlist All checks are enabled by default starting with version 4.1.
Use the -netlist switch if you want to run only chip-level
checks. These checks are run on the gate-level design netlist.

-nocheck Elaborate the design but don’t run any rule checks.

306 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

-propagate Enable constant propagation. See the -case_analysis option,
which you use to point to a file that contains set_case_analysis
commands that make constant propagation work.

-config Specify the full path to the configuration file that you want to
use for this run with the tool.

-policy Specify a policy_name that you want to check. If you use this
option, Leda ignores rule selections specified in your current
configuration.

-ruleset Specify a ruleset_name that you want to check. If you use this
option, Leda ignores rule selections specified in your current
configuration.

-rule Specify a rule_label for a rule that you want to check. If you
use this option, Leda ignores rule selections specified in your
current configuration.

-nowarning Optional, and only relevant for chip-level checks. Use the
-nowarning switch to suppresses warning messages generated
during compilation and elaboration.

-top Use the -top option to specify the top_unit_name or
library_name for your design hierarchy. This is required in
order to check for chip-level rule violations.

-noelaboration Do not force re-elaboration if it is not necessary.

-case_analysis_file Use the -case_analysis_file option to point Leda to an ASCII
text file containing set_case_analysis commands that specify
constant values for primary inputs or internal signals used in
constant propagation. For more information, see “Propagating
Constants” on page 96.

-nohierdump Use the -nohierdump switch to turn off generation of the
hierarchy browsing database. Optionally, also specify a limit
for the hierarchy dump instead of a full disable. This speeds up
tool performance, but disables the hierarchy browser in the
GUI after a Checker run.

-clockdump Use the -clockdump switch to enable use of the Clock and
Reset Tree browsers when you load a log file into the Error
Viewer after checking your design. Note that this switch can
slow Leda’s performance when checking large netlists. See
“Using the Clock and Reset Tree Browsers” on page 126.

June 2006 Synopsys, Inc. 307

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

-max_violations Use the -max_violations option to set the maximum number of
violations per selected rule that Leda flags. The default is 100.

Example
The following example runs all rules selected in the current configuration. In this case,
only a few chip-level rules were selected, so those are the checks Leda executed:

leda> verify -top top
Executing chip-level checks on design top ...
Chip-level checks on design top completed.

Generating Log Files in Tcl Mode
When you create a project in the Tcl mode, a directory leda-logs is created in the present
working directory. Files leda.log and leda.inf are created in this directory.

Reserved Variables
Leda's shell uses the following global constants. You can read these constants but you
cannot modify them.

• CCI_register_constant("A_RESET")

• CCI_register_constant("A_SET")

• CCI_register_constant("ACTIVE_HIGH")

• CCI_register_constant("ACTIVE_LOW")

• CCI_register_constant("ADD")

• CCI_register_constant("ALWAYS_ON")

• CCI_register_constant("AND")

• CCI_register_constant("BLACKBOX")

• CCI_register_constant("BUFFER")

• CCI_register_constant("BUFFERED")

• CCI_register_constant("BUS")

• CCI_register_constant("CELL")

• CCI_register_constant("CHECK_RECONVERGENT_FANOUT")

• CCI_register_constant("CHECKLIB")

• CCI_register_constant("CLOCK")

308 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

• CCI_register_constant("CLOCK_SIGNAL_INDEX")

• CCI_register_constant("CMD_FILE")

• CCI_register_constant("COMPLEX")

• CCI_register_constant("CONCISE_REPORT")

• CCI_register_constant("CONTROL")

• CCI_register_constant("COUNT_ALL_OCCURRENCES")

• CCI_register_constant("COUNT_LOGIC_LEVEL")

• CCI_register_constant("DATA")

• CCI_register_constant("DB_OBJECT")

• CCI_register_constant("DEFINITION")

• CCI_register_constant("DQ_STOP_AT_BOUNDARY")

• CCI_register_constant("DQ_TRACE_LOGIC_LEVEL")

• CCI_register_constant("ENABLE")

• CCI_register_constant("ENABLE_HIGH")

• CCI_register_constant("ENABLE_LOW")

• CCI_register_constant("EXCLUDED")

• CCI_register_constant("FILE")

• CCI_register_constant("filter1_data")

• CCI_register_constant("filter1_type")

• CCI_register_constant("filter2_data")

• CCI_register_constant("filter2_type")

• CCI_register_constant("filter3_data")

• CCI_register_constant("filter3_type")

• CCI_register_constant("filter4_data")

• CCI_register_constant("filter4_type")

• CCI_register_constant("FLIPFLOP")

• CCI_register_constant("CCI_register_constant("GATE_NETLIST")

• CCI_register_constant("GIVE_ALL_PATHS")

• CCI_register_constant("GIVE_EDGE_INFO")

June 2006 Synopsys, Inc. 309

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

• CCI_register_constant("GND")

• CCI_register_constant("GO_THROUGH_SEQ")

• CCI_register_constant("I")

• CCI_register_constant("IGNORE_CONSTANT_SIGNALS")

• CCI_register_constant("IMPLICIT")

• CCI_register_constant("INCLUDE_FILE")

• CCI_register_constant("INSTANCE")

• CCI_register_constant("INV_TRIEN")

• CCI_register_constant("INV_TRIENB")

• CCI_register_constant("INVERTED")

• CCI_register_constant("INVERTER")

• CCI_register_constant("IO")

• CCI_register_constant("ISOLATION_CELL")

• CCI_register_constant("LATCH")

• CCI_register_constant("LEVEL_SHIFTER")

• CCI_register_constant("LIST_ARGUMENT")

• CCI_register_constant("LIST_TYPE")

• CCI_register_constant("LOOP")

• CCI_register_constant("MEMORY")

• CCI_register_constant("MULT")

• CCI_register_constant("MUX_N")

• CCI_register_constant("MUX21")

• CCI_register_constant("MUX41")

• CCI_register_constant("NAND")

• CCI_register_constant("NEGEDGE")

• CCI_register_constant("NET")

• CCI_register_constant("NON_INVERTED")

• CCI_register_constant("NOR")

• CCI_register_constant("NORMAL_REPORT")

310 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

• CCI_register_constant("NOTIFIER")

• CCI_register_constant("O")

• CCI_register_constant("OR")

• CCI_register_constant("PAD")

• CCI_register_constant("PI")

• CCI_register_constant("PIO")

• CCI_register_constant("PO")

• CCI_register_constant("PORT")

• CCI_register_constant("POSEDGE")

• CCI_register_constant("POSITIONAL_SIGNAL_INDEX")

• CCI_register_constant("POWER")

• CCI_register_constant("POWER_BLOCK")

• CCI_register_constant("POWER_REGION")

• CCI_register_constant("POWER_SWITCH")

• CCI_register_constant("PRIMITIVE")

• CCI_register_constant("PRIORITY_PIN")

• CCI_register_constant("Q")

• CCI_register_constant("QN")

• CCI_register_constant("S_RESET")

• CCI_register_constant("S_SET")

• CCI_register_constant("SCAN_CLOCK")

• CCI_register_constant("SCAN_ENABLE")

• CCI_register_constant("SCAN_IN")

• CCI_register_constant("SIGNAL")

• CCI_register_constant("STMT")

• CCI_register_constant("STOP_AT_ANY_SIGNAL")

• CCI_register_constant("STOP_AT_COMPLEX")

• CCI_register_constant("STOP_AT_PORT")

• CCI_register_constant("SUPPLY0")

June 2006 Synopsys, Inc. 311

Leda User Guide Chapter 8: Using Leda Tcl Shell Mode

• CCI_register_constant("SUPPLY1")

• CCI_register_constant("SYMBOL_SIGNAL_INDEX")

• CCI_register_constant("TOP_MODULE")

• CCI_register_constant("TRACK_INFO_TRACE")

• CCI_register_constant("TRIEN")

• CCI_register_constant("TRIENB")

• CCI_register_constant("TRISTATE")

• CCI_register_constant("V_FILE")

• CCI_register_constant("v0")

• CCI_register_constant("v1")

• CCI_register_constant("VERBOSE_REPORT")

• CCI_register_constant("VOLTAGE_BLOCK")

• CCI_register_constant("VOLTAGE_REGION")

• CCI_register_constant("vU")

• CCI_register_constant("vX")

• CCI_register_constant("vZ")

• CCI_register_constant("XNOR")

• CCI_register_constant("XOR")

• CCI_register_constant("Y_FILE")

312 Synopsys, Inc. June 2006

Chapter 8: Using Leda Tcl Shell Mode Leda User Guide

June 2006 Synopsys, Inc. 313

Leda User Guide Appendix A: Managing VHDL Libraries and Files

A
Managing VHDL Libraries and Files

Introduction
The concept of libraries is associated more with VHDL than Verilog. This appendix is
therefore intended for VHDL users. It presents detailed information on how to manage
VHDL resource libraries and files for projects that you create for checking with Leda, in
the following major sections:

• “Setting Libraries” on page 313

• “Building Libraries” on page 314

• “Adding Files to VHDL Resource Projects” on page 315

• “Adding Libraries to VHDL Resource Projects” on page 315

• “Creating Local VHDL Resource Libraries” on page 316

Setting Libraries
You set libraries when you create a project to organize your HDL source files for
checking with Leda (see “Creating Projects to Check HDL Code” on page 91). Use the
Specify Libraries window available from the Project Creation Wizard (Project > New),
to specify libraries. Specify Libraries is the third window that the Wizard brings you to.

Click the New button at the top of the window to specify the logical name of each
working library. Leda creates working libraries in the project_name-libs subdirectory.
Note that this library is now available both for Verilog and VHDL.

314 Synopsys, Inc. June 2006

Appendix A: Managing VHDL Libraries and Files Leda User Guide

Setting Resource Libraries
Use the Specify Compiler Options window available from the Project Creation Wizard
(Project > New), to specify resource libraries for VHDL 87 or 93, depending on the
version you are using. Specify Compiler Options is the second window that the Wizard
brings you to. Just click on the 87 or 93 radio button at the bottom of the window. Leda
automatically adds the required resource libraries for your language version.

Caution
You cannot mix VHDL 87 and 93 libraries in the same Leda project.

Use the Specify Libraries window available from the Project Creation Wizard (Project
> Libraries), to add resource libraries to your project. Specify Libraries is the third
window that the Wizard brings you to. Select a logical library name from the pull-down
menu at the top of the window. Then use the Add button to navigate to the location of
the associated physical library. Click on OK. Leda displays the full path to the new
physical library in the window. To remove a physical library from the selected logical
library, select the library full path name in the window and click the Remove button.

Building Libraries
When you are done specifying source files and libraries for your project, use the
Confirm and Create window in the Project Creation Wizard to build the project and
compile your source files. Confirm and Create is the fifth and final window that the
Wizard brings you to.

Select the Build with Check check box and click the Finish button at the bottom of the
window. This causes Leda to:

• Generate a command file (project_name.cmd) and create project_name-libs and
project_name-logs directories in the current working directory for the project.

• Generate a script that creates project libraries in the project_name-libs directory.

• Generate a Makefile and use it to compile the source files (in order) into their
corresponding libraries in the project_name-libs directory.

• Open the project with a name of project_name.pro.

• Run the Checker on any policies, or sets of rules, that you have selected.

If the Makefile fails to generate the project correctly, there may be a syntax error in one
of the source files. In this case, Leda opens the project with the correct list of files in the
Files tab, but in the Modules/Units tab some units are missing. To solve this problem, fix

June 2006 Synopsys, Inc. 315

Leda User Guide Appendix A: Managing VHDL Libraries and Files

the syntax errors in your HDL source files and go back to the Specify Source Files
window available from the Project Update Wizard (Project > Edit). Specify the source
files that you fixed and then rebuild the project.

Adding Files to VHDL Resource Projects
Sometimes, it can be useful to add other libraries or units to these resource libraries so
that they too are automatically included in every project. For example, most synthesis
tools have technology libraries, or tool-specific packages that are stored in the IEEE
library. To do this, you must add these libraries to the VHDL 87 or 93 resource projects
like you were building a project from scratch. In other words, simply updating the
VHDL resource projects does not work. If you want to add a new package to the IEEE
library, for example, follow these steps:

1. Place the cursor over the IEEE library icon in the Files tab on the left side of the
main window, and hold down the right mouse button.

2. Select the Add Files option and choose the files to add using the Add Files window.

Note
In VHDL, the compilation order for files is important. Leda compiles files in
the order that they appear in the Specify Source Files window available from
the Project Creation Wizard (Project > New) or Update the Project window
(Project > Edit). Therefore, if a library or file depends on another library or
file, it must appear after that library or file in the Specify Source Files
window.

All projects that use these VHDL resource libraries now automatically include the new
resources.

Adding Libraries to VHDL Resource Projects
You can also add new libraries to one of the default VHDL resource projects. Follow
these steps:

1. Place the cursor over the Source Files icon in the Files tab on the left side of the
main window, and hold down the right mouse button.

2. Select the Add a Library option and choose the files to add using the Add Working
Library window.

3. When the library is created, add and compile the files in the correct compilation
order.

316 Synopsys, Inc. June 2006

Appendix A: Managing VHDL Libraries and Files Leda User Guide

4. Choose Project > Save to save the project, and Project > Close to close the project.

All projects that use these VHDL resource libraries now automatically include the new
resources.

Creating Local VHDL Resource Libraries
In some cases, it may not be possible to modify the global resource projects. Perhaps
you don’t have write permissions or the resources you want to update are not global. In
such cases, you can create local resource libraries in a location other than
$LEDA_PATH/resources. Follow these steps:

1. Set the LEDA_RESOURCES environment variable to point to a directory where
you have write permissions and want your local VHDL resource libraries to go, as
shown in the following example:

% setenv LEDA_RESOURCES my_resources_library_directory

2. Run the Leda installation setup script and answer Yes when the script asks you if
you want to install resource libraries locally, as shown in the following example:

% $LEDA_PATH/utilities/setup_custom

June 2006 Synopsys, Inc. 317

Leda User Guide Appendix B: Leda Environment Variables

B
Leda Environment Variables

Introduction
To use Leda, you need to make sure that your environment is set up correctly. You set
many Leda environment variables during installation. For information on how to set
these variables, see the Leda Installation Guide. Other environment variables are
important in the context of specific tasks that you want to perform with Leda. Those are
documented in this manual along with the procedures where they apply.

Setting Leda Environment Variables
You can set Leda environment variables in the shell before you invoke the tool, or in a
.synopsys_leda.setup file that Leda reads at invocation time. Specify values for your
environment variables as shown in the following examples:

set env(search_path) "your_search_path"
set env(link_library) "your_link_library"
set env(LEDA_CONFIG) "my_config_dir"

Put your .synopsys_leda.setup file in $HOME or the current working directory ($cwd).
This file should be used only to set environment variables. Leda uses the last
environment variable settings found in the following search path:

• $HOME/.synopsys_leda.setup

• $cwd/.synopsys_leda.setup

318 Synopsys, Inc. June 2006

Appendix B: Leda Environment Variables Leda User Guide

Using Leda Environment Variables
All of the Leda environment variables and their uses are also listed in Table 36. Note
that you can check your environment at any time while using the Leda GUI by clicking
on the Info Report tab on the right side of the main window. For more information on
using the Info Report, see “Checking Your Environment” on page 171.

Table 36: Leda Environment Variables

Environment Variable Use

HTML_NAVIGATOR Set this variable to the location of the HTML browser that you
want Leda to use for viewing HTML-based help files and reports.

LEDA_CONFIG Set this variable to the location of a global configuration not in
$LEDA_PATH, in cases where multiple users are expected to use
the same prepackaged rule configuration when checking their
designs. For more information, see “Configuring the Rule
Wizard” on page 73.

LEDA_CLOCK_FILE Set this variable to the dumped modified clock file. The CDC
rules take these information as inputs. For more information, see
“Clock Grouping Feature” on page 66.

LEDA_HTML_DOC_PATH If you write your own custom rules, set this variable to point to the
directory where the primary HTML-based help file is located.

LEDA_HTML_USR_PATH If you write your own custom rules, set this variable to point to the
directory where the secondary HTML-based help file is located.
Use the secondary help file for additional information or
application notes for each rule.

LEDA_LANGUAGE If you want to see messages in the Error Viewer for the
VER_STARC_2001 and VHD_STARC_2001 policies
displayed in Japanese instead of English (the default), set this
variable to JAPANESE before invoking Leda. For more
information, see “Displaying Error Messages for STARC
Policies” on page 115.

LEDA_MAX_CLOCKS Set this variable to define the maximum clock limit when using
the clock file feature. The default value is 500. For more
information, see “Clock Grouping Feature” on page 66.

LEDA_PATH Set this variable to the directory where you installed Leda before
you try to run the software. You also set this variable to the target
directory before you run the custom installation script
(setup_custom).

LEDA_READER Set this variable to the location of the PDF file reader that you
want Leda to use for viewing the PDF-based Leda documentation.
(Acrobat Reader recommended.)

June 2006 Synopsys, Inc. 319

Leda User Guide Appendix B: Leda Environment Variables

LEDA_RESOURCES For VHDL only. Set this variable to the directory where you want
to optionally install a copy of the IEEE VHDL resource libraries.
This local installation is in addition to the required global
installation. Set before running the setup_custom installation
script (see “Creating Local VHDL Resource Libraries” on
page 316).

LEDA_SELECT_FILE In older versions of Leda, this variable was used to point to the
location of a .leda_select file that you could use to deactivate
rules. For more information, see “Translating .leda_select Files”
on page 106.

link_library Set this variable to the location of any technology-dependent .db
files that you want Leda to search when trying to resolve
architecture/model instantiations for checking chip-level rules.
For more information, see “Using .db Files for Checks” on
page 39.
You can specify multiple link_libraries by separating the names
with spaces and enclosing the list of entries in quotation marks.
For example:

% setenv link_library “gtech.db class.db”

search_path Set this variable to the location of technology-dependent .db
libraries if you want Leda to search these libraries during the
analysis and elaboration of designs for checking chip-level rules.
See “Using .db Files for Checks” on page 39.
You can specify multiple search_paths by separating the names
with spaces and enclosing the list of entries in quotation marks.
For example:

% setenv search_path “/u/me/lib1 /u/me/lib2”

Not that the search_path variable can only be used to find link
libraries, not design files.

LM_LICENSE_FILE Standard FLEXlm license file variable. Set to the full path to your
license file (license.dat) or license server (port@host).

SNPSLMD_LICENSE_FILE Alternative Synopsys license file variable. Set to the full path to
your license file (license.dat) or license server (port@host).

Table 36: Leda Environment Variables (Continued)

Environment Variable Use

320 Synopsys, Inc. June 2006

Appendix B: Leda Environment Variables Leda User Guide

June 2006 Synopsys, Inc. 321

Leda User Guide Appendix C: Leda Prebuilt Configurations

C
Leda Prebuilt Configurations

Overview
Leda supports eight different prebuilt rule configurations. Each section in this appendix
lists the rules contained in these configurations and explains how to load them:

• “RTL Prebuilt Configuration” on page 322

• “Gate-level Prebuilt Configuration” on page 325

• “Leda-classic Prebuilt Configuration” on page 327

• “CDC Prebuilt Configuration” on page 387

• “SDC-postlayout Prebuilt Configuration” on page 388

• “SDC-prelayout Prebuilt Configuration” on page 390

• “SDC-RTL Prebuilt Configuration” on page 393

• “SDC-top-versus-block Prebuilt Configuration” on page 396

• “SDC-equivalency Prebuilt Configuration” on page 397

Note
Leda-optimized is a subset of the Leda-classic prebuilt configuration. This
configuration is “optimized” to remove similar rules from different policies.

322 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

RTL Prebuilt Configuration
The following rules are from the RTL prebuilt configuration. This configuration
contains about 70 rules drawn from the DC, DFT, Formality, RMM, and Leda general
coding guidelines policies. This configuration is the default. To load this rule
configuration, from the Rule Wizard, choose Config > Load configuration, and use the
pull-down menu to select RTL.

Table 37: RTL Prebuilt Configuration

Rule Label Policy Message

DCHDL_115 DC Illegal mixing of named and unnamed port association.

DCHDL_178 DC Only simple variables are checked in the sensitivity list.

DCVER_192 DC Initial statement not supported.

DCVER_274 DC Verilog system task is not supported.

DCVHDL_165 DC ‘while’ statement not supported.

DFT_021 DFT Latch inferred for <%item>.

DFT_022 DFT Incomplete case statement.

FM_2_10 FORMALITY Using X, Z values or ? in case items is not recommended (such
items may be ignored by synthesis tools).

FM_2_12 FORMALITY Incomplete case_statement using full_case directive is not
recommended (not supported by some emulation tools).

FM_2_13 FORMALITY When case items are duplicated (parallel), do not use
parallel_case directive.

FM_2_18 FORMALITY Case choice after the default may be ignored by some simulation
tools.

FM_2_4 FORMALITY Assignment to X is not recommended (handled differently by
simulation and synthesis tools).

FM_2_7 FORMALITY Use named association in port map.

FM_2_9 FORMALITY Using X, Z values or ? for comparison is not recommended
(differently handled by simulation/synthesis tools).

B_1001 LEDA Reading from outport <%item>.

B_1002 LEDA Port declaration <%item> is unused or partially unused.

B_1011 LEDA Module instantiation is not fully bound. Port <%format> is not
completely connected.

June 2006 Synopsys, Inc. 323

Leda User Guide Appendix C: Leda Prebuilt Configurations

B_1204 LEDA Multi-bit expression used as a clock.

B_2001 LEDA Shift by a non constant value is not allowed.

B_2011 LEDA Variable is not always initialized in process body before being
read.

B_3010 LEDA Loop index must be declared as integer.

B_3203 LEDA The expression in for loop must not be constant.

B_3208 LEDA Unequal length LHS and RHA in assignment.

B_3209 LEDA Unequal length port and connection in module instantiation.

B_3408 LEDA Case condition should not be constant.

B_3409 LEDA While condition expression is constant.

B_3410 LEDA X in case expression.

B_3416 LEDA Use blocking assignments in combinatorial block.

B_3417 LEDA Use non-blocking assignments in sequential block.

B_3419 LEDA Missing signal <%item> in sensitivity list.

B_3602 LEDA Moore style description of state machines is recommended.

B_3604 LEDA Assign a default state to the state machines.

B_3605_A LEDA Use parameter declarations to define the state vector of a state
machine.

B_3605_B LEDA Use an enumerated type to define the state vector of a state
machine.

B_3607 LEDA The number of states in a state machine should be a power of 2.

C_1000 LEDA Asynchronous feedback loop detected.

C_1001 LEDA Flip-flop with fixed value data input is detected.

C_1005 LEDA Top-level outputs are not registered.

C_1007 LEDA Pulse generator detected.

C_1009 LEDA Multiple non-tristate drivers to signal <%item> detected.

C_1201 LEDA Clocks must not be used as data.

Table 37: RTL Prebuilt Configuration (Continued)

Rule Label Policy Message

324 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

C_1203 LEDA Internally generated clock detected (chip level).

C_1204 LEDA No gated clock except in clock generator CKGEN.

C_1406 LEDA Register with no reset/set/load is detected.

G_546_1 RMM_RTL_
CODING_
GUIDE-
LINES

Avoid internally generated reset/load <%item>.

G_551_1_B RMM_RTL_
CODING_
GUIDE-
LINES

The always keyword must be followed by an event list @(...) in a
sequential block.

R_521_10 RMM_RTL_
CODING_
GUIDE-
LINES

Always use descending range for multi-bit signals and ports.

R_529_1 RMM_RTL_
CODING_
GUIDE-
LINES

VHDL or Verilog reserved words cannot be used as identifiers.

Table 37: RTL Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 325

Leda User Guide Appendix C: Leda Prebuilt Configurations

Gate-level Prebuilt Configuration
The following rules are from the Gate-level prebuilt configuration. This configuration
contains 90 chip-level and netlist/design rules selected from the Design and Leda
general coding guidelines policies.To load this rule configuration, from the Rule
Wizard, choose Config > Load configuration, and use the pull-down menu to select
Gate-level.

Table 38: Gate-level Prebuilt Configuration

Rule Label Policy Message

NTL_CLK04 DESIGN Do not use internally generated clock.

NTL_CLK05 DESIGN All asynchronous inputs to a clock system must be clocked
twice.

NTL_CLK07 DESIGN Avoid gated clocks unless absolutely necessary.

NTL_CLK13 DESIGN Buffer on cock path detected.

NTL_CLK14 DESIGN Inverter on clock path detected.

NTL_CLK17 DESIGN Reconvergent path on clock tree detected.

NTL_CLK21 DESIGN Pulse generator created by self flip-flop.

NTL_CLK22 DESIGN Clock chopper/extender detection.

NTL_CON01 DESIGN Unconnected top level input port.

NTL_CON02 DESIGN Unconnected top level output port.

NTL_CON03 DESIGN Unconnected top level inout port.

NTL_CON06 DESIGN Input pin tied to supply.

NTL_CON10 DESIGN Output tied to supply.

NTL_PAD09 DESIGN Forbidden pad connection.

NTL_PAD11 DESIGN Isolate I/O pad from the core logic.

NTL_PAR19 DESIGN Clock generation logic should be put in a particular module.

NTL_RST04 DESIGN A reset signal is not allowed to be used as an input to control
path logic.

NTL_RST06 DESIGN Avoid internally generated resets.

NTL_RST07 DESIGN Don’t use one reset signal for both asynchronous reset and
synchronous reset.

326 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

NTL_RST12 DESIGN Buffer on reset path detected.

NTL_RST13 DESIGN Inverter on reset path detected.

NTL_RST16 DESIGN Reconvergent path on reset tree detected.

NTL_STR05 DESIGN A signal that passes through several hierarchical levels must
have the same name throughout.

NTL_STR07 DESIGN Avoid glue logic at top level.

NTL_STR18 DESIGN Avoid clock as set or reset circuitry.

NTL_STR23 DESIGN Max. number of fanout between modules.

NTL_STR24 DESIGN Number of logical levels between 2 flip-flops exceeds maximum
limit.

NTL_STR37 DESIGN Avoid combinatorial logic on the control signal of a tristate
driver.

NTL_STR47 DESIGN Do not use latch.

NTL_STR61 DESIGN Do not use clock or enable signals as data inputs.

C_1000 LEDA Asynchronous feedback loop detected

C_1001 LEDA Flip-flop with fixed value data input is detected.

C_1003 LEDA Latch detected in design (inferred or instantiated).

C_1004 LEDA Glue logic at top-level is detected.

C_1005 LEDA Top-level outputs are not registered.

C_1006 LEDA Top-level inputs are not registered.

C_1007 LEDA Pulse generator detected.

C_1009 LEDA Multiple non-tristate drivers to signal <%item> detected.

Table 38: Gate-level Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 327

Leda User Guide Appendix C: Leda Prebuilt Configurations

Leda-classic Prebuilt Configuration
The following rules are from the Leda-classic prebuilt configuration. This configuration
is close to the default configuration used in older versions of the tool.To load this rule
configuration, from the Rule Wizard, choose Config > Load configuration, and use the
pull-down menu to select Leda-classic.

Note
Leda-optimized is a subset of the Leda-classic prebuilt configuration. This
configuration is “optimized” to remove similar rules from different policies.

Table 39: Leda-classic Prebuilt Configuration

Rule Label Policy Message

DCHDL_109 DC This use of clock edge specification not supported.

DCHDL_115 DC Illegal mixing of named and unnamed port association.

DCHDL_170 DC Comparisons to a unknown, three-state are treated as always
being false. This may cause simulation to cause to disagree with
synthesis.

DCHDL_175 DC Clock variable is being used as data

DCHDL_177 DC Local variable is being read before its value is assigned. This
may cause simulation not to match synthesis.

DCHDL_178 DC Only simple variables are checked in the sensitivity list.

DCHDL_224 DC Wait statements in process use different clocks or clock edges.

DCHDL_230 DC Package name <%item> is an internal package. Please use a
different name for your package.

DCHDL_270 DC An unsupported expression is assigned to constant.

DCHDL_326 DC Enumeration type defined in a generate statement is not
supported.

DCHDL_389 DC Name too long for compiled code.

DCHDL_6 DC Loop body will iterate zero times.

DCHDL_96 DC Infinite recursion detected.

DCVER_129 DC Intra-assignment delays for blocking statements are ignored.

DCVER_131 DC This design contains event in verilog blocking assignment.

DCVER_132 DC This design contains event in verilog non-blocking assignment.

328 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

DCVER_135 DC Intra-assignment repeat-event controls for non-blocking
assignments are ignored.

DCVER_143 DC RTL assignments are allowed only when no blocking delays are
used.

DCVER_154 DC Gate instance with too few ports. Port <%format> is not
completely connected.

DCVER_173 DC Delays for continuos assignment are ignored.

DCVER_176 DC Delay statements are ignored for synthesis.

DCVER_177 DC REAL declarations are not supported by synthesis.

DCVER_178 DC REAL TIME declarations are not supported by synthesis.

DCVER_179 DC TRIAND declarations are not supported by synthesis.

DCVER_180 DC TRIOR declarations are not supported by synthesis.

DCVER_181 DC TRI0 declarations are not supported by synthesis.

DCVER_182 DC TRI1 declarations are not supported by synthesis.

DCVER_183 DC TRIREG declarations are not supported by synthesis.

DCVER_184 DC PULLDOWN declarations are not supported by synthesis.

DCVER_185 DC PULLUP declarations are not supported by synthesis.

DCVER_187 DC FORK and JOIN constructs are not supported by synthesis.

DCVER_188 DC WAIT statements are not supported by synthesis.

DCVER_189 DC CASE EQUALITY (===) is not supported by synthesis.

DCVER_190 DC CASE INEQUALITY (===) is not supported by synthesis.

DCVER_191 DC TIME declarations are not supported.

DCVER_192 DC Initial statement not supported.

DCVER_193 DC Event triggers not supported.

DCVER_219 DC Repeat constructs are not supported in synthesis.

DCVER_256 DC Illegal part selection.

DCVER_265 DC RCMOS switches are not supported.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 329

Leda User Guide Appendix C: Leda Prebuilt Configurations

DCVER_266 DC RNMOS switches are not supported.

DCVER_267 DC RPMOS switches are not supported.

DCVER_268 DC RTRAN switches are not supported.

DCVER_269 DC RTRANIF0 switches are not supported.

DCVER_270 DC RTRANIF1 switches are not supported.

DCVER_271 DC TRAN switches are not supported.

DCVER_272 DC TRANIF0 switches are not supported.

DCVER_273 DC TRANIF1 switches are not supported.

DCVER_274 DC Verilog system task is not supported.

DCVER_275 DC User-defined primitives (UDPs) are not supported.

DCVER_276 DC Specify blocks are not supported.

DCVER_277 DC Charge strengths are ignored.

DCVER_286 DC EVENT declarations are not supported.

DCVER_295 DC CMOS switches are not supported.

DCVER_296 DC NMOS switches are not supported.

DCVER_297 DC PMOS switches are not supported.

DCVER_305 DC Drive strength specification for gate instances are ignored.

DCVER_306 DC Drive strength specification for tristate gate instantiation is
ignored.

DCVER_309 DC Drive strength specification for continuous assignment is
ignored.

DCVER_310 DC Keyword ‘scalared’ is ignored.

DCVER_311 DC Parameter range specification is only meaningful to synthesis.
Synthesis and simulation may have different results.

DCVER_4 DC Incompatible port connection in module instantiation.

DCVER_91 DC Module contains a supply 1 variable. Replace with wire driven
by continuous assignment to 1.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

330 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

DCVER_917 DC The ‘inout’ port <%item> is incompatibly declared as real.

DCVER_919 DC The ‘input’ port <%item> is incompatibly declared as real.

DCVER_966 DC Procedural-continuos assignments are not supported by
synthesis.

DCVER_967 DC The ‘force’ construct is not supported by synthesis.

DCVER_968 DC The ‘release’ construct is not supported by synthesis.

DCVER_969 DC The ‘deassign’ construct is not supported by synthesis.

DCVER_970 DC The delay specification for gate instantiation is ignored.

DCVER_971 DC The delay specification for tristate gate instantiation is ignored.

DCVER_972 DC The delay specification for MOS switch instantiation is ignored.

DCVER_973 DC The delay specification for cmos switch instantiation is ignored.

DCVER_974 DC The delay specification for bidirectional switch instantiation is
ignored.

DCVER_976 DC The delay specification for net declaration is ignored.

DCVER_977 DC The strength specification for a net declaration is ignored by
synthesis.

DCVHDL_ 104 DC ‘SIGNAL’ declaration for subprogram input port ignored.

DCVHDL_ 111 DC GUARDED is not supported. It is ignored.

DCVHDL_ 160 DC ‘OTHERS’ and ‘ALL’ not supported for attribute specification.

DCVHDL_ 165 DC ‘while’ statement not supported.

DCVHDL_ 179 DC Iteration scheme required.

DCVHDL_ 197 DC Assumed to be of type ‘integer’

DCVHDL_ 2001 DC Statements in an entity declaration are not supported for
synthesis. They are ignored.

DCVHDL_ 2021 DC ‘BUS’ and ‘REGISTER’ signal kinds are not supported for
synthesis.

DCVHDL_ 2022 DC Initial valued for signals are not supported for synthesis. They
are ignored.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 331

Leda User Guide Appendix C: Leda Prebuilt Configurations

DCVHDL_ 2023 DC Type of the generic is assumed to be ‘Integer’ in synthesis.

DCVHDL_ 2024 DC Only generics of type INTEGER are supported for synthesis.

DCVHDL_ 2040 DC Attribute not supported for synthesis.

DCVHDL_ 2041 DC Alias declarations are not supported for synthesis. They are
ignored.

DCVHDL_ 2042 DC File declarations are not supported for synthesis. They are
ignored.

DCVHDL_ 2043 DC Disconnection specifications are not supported for synthesis.
They are ignored.

DCVHDL_ 2045 DC Guard conditions for blocks are not supported.

DCVHDL_ 2046 DC Declaration and use of generics and ports in a block header is not
supported.

DCVHDL_ 2050 DC Timeout clause not supported for synthesis in wait statement.

DCVHDL_2090 DC Declarations in a configuration declaration statement are not
supported for synthesis. They are ignored.

DCVHDL_ 2091 DC Configuration specifications are not supported for synthesis.

DCVHDL_ 2092 DC Only simple configurations (specification of architecture for a
top-level entity) are supported for synthesis. Nested block
specifications and component configurations are ignored.

DCVHDL_ 2093 DC Access types are not supported for synthesis.

DCVHDL_ 2094 DC File types are not supported for synthesis. They are ignored.

DCVHDL_ 2095 DC Physical types are not supported for synthesis. They are ignored.

DCVHDL_ 2096 DC Incomplete type declarations are not supported for synthesis.
They are ignored.

DCVHDL_ 2097 DC Signal assignment delays are not supported for synthesis. They
are ignored.

DCVHDL_ 2098 DC ‘Transport’ construct is not supported for synthesis. It is ignored.

DCVHDL_ 2099 DC Assert and report statements are not supported for synthesis.
They are ignored.

DCVHDL_ 2100 DC Allocators are not supported for synthesis.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

332 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

DCVHDL_ 2108 DC Wait statements are not supported in subprograms.

DCVHDL_ 2109 DC Event and Stable attributes are not supported in subprograms.

DCVHDL_ 2111 DC Aggregate assignment by name is not supported for the field
names of a record.

DCVHDL_ 2131 DC Configurations are not supported for direct instantiation during
synthesis.

DCVHDL_ 2140 DC Multi-dimensional arrays are not supported for synthesis.

DCVHDL_ 2150 DC This form of wait statement is not supported for synthesis.

DCVHDL_ 2151 DC Attribute is not supported for synthesis.

DCVHDL_ 2152 DC This literal is not supported for synthesis.

DCVHDL_ 2155 DC Deferred constants are not supported for synthesis.

DCVHDL_ 2159 DC Empty string constants are not supported for synthesis.

DCVHDL_ 2163 DC The rising_edge or falling_edge function is supported only when
used in conformance with the style described in the VHDL
Reference Manual.

DCVHDL_ 2207 DC You have declared a component inside a for generate loop.

DCVHDL_ 2251 DC Enabling expression not permitted outside wait statements.

DCVHDL_ 2254 DC Time is an unsupported type.

DCVHDL_ 2255 DC Generics of type string are not supported.

DCVHDL_ 2262 DC Enumeration values may not be used as for or for-generate loop
bounds.

DCVHDL_ 2264 DC Incorrect way to use attribute.

DCVHDL_ 2270 DC Aliases to existing aliases are not supported for synthesis.

DCVHDL_ 228 DC Initial values are not supported for variables.

DCVHDL_ 2284 DC Declarative regions of generate statements is not supported.

DCVHDL_ 279 DC STD.TEXTIO package is not supported for synthesis.

DC_31 DC Static data types are not supported in $root

DC_39 DC Array literals are not supported.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 333

Leda User Guide Appendix C: Leda Prebuilt Configurations

DC_42 DC Casting is not supported.

DC_53 DC Import/export of tasks and functions is not supported.

DC_54 DC Process statement is not supported.

DC_55 DC Nested module/interface declaration is not supported.

NTL_CLK01 DESIGN Use only one clock domain

NTL_CLK03 DESIGN Use only one edge of the clock.

NTL_CLK04 DESIGN Do not use internally generated clock.

NTL_CLK05 DESIGN All asynchronous inputs to a clock system must be clocked
twice.

NTL_CLK07 DESIGN Avoid gated clocks unless absolutely necessary.

NTL_CLK08 DESIGN If gated clocks are necessary, isolate them and make them
global.

NTL_CLK09 DESIGN All clock signals should be generated in a module driven by a
single external clock.

NTL_CLK10 DESIGN Clock signal gated with an OR gate.

NTL_CLK11 DESIGN Clock signal gated with an AND gate.

NTL_CLK12 DESIGN Clock signal gated with another combinatorial cell.

NTL_CLK13 DESIGN Buffer on cock path detected.

NTL_CLK14 DESIGN Inverter on clock path detected.

NTL_CLK15 DESIGN Clock pin not connected to clock net.

NTL_CLK17 DESIGN Reconvergent path on clock tree detected.

NTL_CLK18 DESIGN Try to concentrate the clock generation circuitry at the top-level
of the design.

NTL_CLK19 DESIGN Do not add XOR or XNOR on clock path.

NTL_CLK20 DESIGN Use only OR gate for joined clock.

NTL_CLK21 DESIGN Pulse generator created by self flip-flop.

NTL_CLK22 DESIGN Clock chopper/extender detection.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

334 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

NTL_CLK23 DESIGN Multiple asynchronous clock domain signals converging on
<gate name>

NTL_CON01 DESIGN Unconnected top level input port.

NTL_CON02 DESIGN Unconnected top level output port.

NTL_CON03 DESIGN Unconnected top level inout port.

NTL_CON04 DESIGN All inputs pin tied together.

NTL_CON06 DESIGN Input pin tied to supply.

NTL_CON10 DESIGN Output tied to supply.

NTL_CON15 DESIGN Power rails belonging to different supply types should not short.

NTL_CON16 DESIGN Nets or cell pins should not be tied to logic 0/logic 1.

NTL_CON17 DESIGN Do not connect tie off cell to logic 0/logic 1.

NTL_DFT02 DESIGN Separate DFT functionality from regular functionality.

NTL_DFT07 DESIGN Internally generated output enable signal must be observable/
controllable.

NTL_DFT08 DESIGN No contention may take place during scan-test mode.

NTL_DFT09 DESIGN Scan-input and scan output must be a primary input/output.

NTL_DFT10 DESIGN Scan chain too long.

NTL_DFT11 DESIGN Flip-flops in a scan chain must have a common scan clock.

NTL_DFT12 DESIGN Separate scan chain for different clock domain.

NTL_DFT13 DESIGN Use a single clock edge for a given scan-chain.

NTL_DFT14 DESIGN Use a single clock for a given scan-chain.

NTL_DFT15 DESIGN All scan-in input port must be controllable from the top.

NTL_DFT16 DESIGN All scan-out output port must be observable from the top.

NTL_DFT17 DESIGN Scan-in used in combinatorial part.

NTL_DFT22 DESIGN Use one synchronous clock (positive or negative edge) during
test.

NTL_DFT23 DESIGN Clock signal must be controllable.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 335

Leda User Guide Appendix C: Leda Prebuilt Configurations

NTL_DFT24 DESIGN Internally generated clock must be observable/controllable.

NTL_DFT25 DESIGN Make sure that all sequential scan-cells are driven with a test
clock while the scan mode is active.

NTL_DFT26 DESIGN Scan clock control flip-flop data.

NTL_DFT27 DESIGN Scan clock control I/O cell.

NTL_DFT28 DESIGN Scan clock should be called scan_clk...

NTL_DFT29 DESIGN Asynchronous set/reset inputs of flip-flops must be inactive
during scantest.

NTL_DFT32 DESIGN Connect all non-observable nodes of the design to a Xor tree.

NTL_DFT34 DESIGN Use data-look-up latches for clock domain crossing.

NTL_DFT36 DESIGN Do not use scan-type flip flops for functional mode.

NTL_DFT37 DESIGN Insert scan flip-flop around Black box.

NTL_DFT41 DESIGN Flip-flop with tied input is detected.

NTL_DFT50 DESIGN All sequential cells must be connected to a test clock in test
mode.

NTL_DFT52 DESIGN All set/reset pins must be controllable during test mode.

NTL_DFT53 DESIGN Scan-enable must be controllable from the top.

NTL_DFT54 DESIGN Insert test enable for scan test.

NTL_DFT55 DESIGN Test-enable signal must be generated from the scan-mode or
directly from the primary inputs.

NTL_DFT56 DESIGN Scan-enable used in combinatorial part.

NTL_LAN01 DESIGN Tri assignment target must be a port.

NTL_LAN15 DESIGN Unused signals.

NTL_LAN21 DESIGN Netlist and libraries shall not have upper-lower case clash.

NTL_LAM02 DESIGN Clock ports must be assigned to internal clock signals that start
with clk.

NTL_LAM03 DESIGN A reset port must be assigned to an internal reset signal that
starts with rst.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

336 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

NTL_LAM07 DESIGN A registered output port should end with _r.

NTL_PAD05 DESIGN Controllable pull-up.

NTL_PAD06 DESIGN Controllable pull-down.

NTL_PAD07 DESIGN Push pull always disabled.

NTL_PAD08 DESIGN Input port always disabled.

NTL_PAD09 DESIGN Forbidden pad connection.

NTL_PAD10 DESIGN Output port always disabled.

NTL_PAD11 DESIGN Isolate I/O pad from the core logic.

NTL_PAD13 DESIGN Primary inputs must be connected to exactly 1 PAD cell.

NTL_PAR13 DESIGN Separate the design according to clock domains.

NTL_PAR18 DESIGN Clock and Reset generators should be located at the top of the
design in a dedicated module.

NTL_PAR19 DESIGN Clock generation logic should be put in a particular logic.

NTL_RST01 DESIGN Use only one reset domain.

NTL_RST02 DESIGN A system reset must be defined.

NTL_RST04 DESIGN A reset signal is not allowed to be used as an input to control
path logic.

NTL_RST05 DESIGN Don’t use asynchronous set/reset signal except for initial reset.

NTL_RST06 DESIGN Avoid internally generated resets.

NTL_RST07 DESIGN Don’t use one reset signal for both asynchronous reset and
synchronous reset.

NTL_RST08 DESIGN Locally gated asynchronous resets should be avoided.

NTL_RST09 DESIGN Reset signal gated with an OR gate.

NTL_RST10 DESIGN Reset signal gated with an AND gate.

NTL_RST11 DESIGN Reset signal gated with another combinatorial cell.

NTL_RST12 DESIGN Buffer on reset path detected.

NTL_RST13 DESIGN Inverter on reset path detected.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 337

Leda User Guide Appendix C: Leda Prebuilt Configurations

NTL_RST14 DESIGN Reset pin not connected to reset net.

NTL_RST16 DESIGN Reconvergent path on reset tree detected.

NTL_RST17 DESIGN Reset gating must take care of the flip-flop triggering edge.
Flip-flop must be of opposite edge.

NTL_RST18 DESIGN Reset signal must not interact with the other latch pins.

NTL_SET01 DESIGN Use only one set domain.

NTL_STR02 DESIGN Avoid asynchronous design.

NTL_STR04 DESIGN Enable signals of bidirectional PADs should be registered before
being connected to an output.

NTL_STR05 DESIGN A signal that passes through several hierarchical levels must
have the same name throughout.

NTL_STR06 DESIGN Top level output should be registered.

NTL_STR07 DESIGN Avoid glue logis at top level.

NTL_STR08 DESIGN Use gate instantiation only at a few instances.

NTL_STR11 DESIGN VDD and GND must not be fed directly into logic.

NTL_STR14 DESIGN Check that circuits labeled _meta are really proper metastable
circuits.

NTL_STR15 DESIGN Give unique name to synchronizers so that they can be
identified.

NTL_STR16 DESIGN Do not use bidirectional ports in sub-modules of your design.

NTL_STR18 DESIGN Avoid clk as set or reset circuitry.

NTL_STR19 DESIGN Detected multiply driven signal.

NTL_STR20 DESIGN Each output enable signal should be assigned to no more than

NTL_STR21 DESIGN The level of the design hierarchy should not exceed %d: %s.

NTL_STR22 DESIGN Inhibit: Use of black box.

NTL_STR23 DESIGN Max number of fanout between modules.

NTL_STR24 DESIGN Number of logical levels between 2 flip-flops exceeds maximum
limit.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

338 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

NTL_STR26 DESIGN No INOUTs at any top level block, although acceptable they
consume a lot of resources in the box.

NTL_STR27 DESIGN Parallel inverters.

NTL_STR28 DESIGN Delay line.

NTL_STR29 DESIGN Pulse generator.

NTL_STR30 DESIGN Shift registers.

NTL_STR31 DESIGN Netlist not uniquified.

NTL_STR34 DESIGN No internal three-state buffers are allowed.

NTL_STR37 DESIGN Avoid combinatorial logic on the control signal of a tri-state
driver.

NTL_STR43 DESIGN Use template for inferred tri-state buffer.

NTL_STR45 DESIGN Single tri-state detected.

NTL_STR47 DESIGN Do not use latch.

NTL_STR48 DESIGN Latches shall be instantiated using the VLSI generic latch
components.

NTL_STR50 DESIGN Inhibit: Latch to Latch path detected.

NTL_STR51 DESIGN Inhibit: Latch with set and reset.

NTL_STR53 DESIGN Anti-skew latch enable not controlled by main clock.

NTL_STR54 DESIGN The enable signal of tri-state or bidirectional ports must be
available at the core boundary.

NTL_STR55 DESIGN Do not use bidirectional ports for scan enable.

NTL_STR56 DESIGN Do not use sequential registers with both asynchronous set and
asynchronous reset.

NTL_STR57 DESIGN Inhibit: multiple asynchronous reset (set) signal.

NTL_STR58 DESIGN Register controlled b multiple clock.

NTL_STR59 DESIGN Inout signal connect to register clock.

NTL_STR61 DESIGN Do not use clock or enable signals as data inputs.

NTL_STR62 DESIGN Netlist shall not have parallel drive situations.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 339

Leda User Guide Appendix C: Leda Prebuilt Configurations

NTL_STR63 DESIGN Tristate and non tristate drivers are driving the same net.

NTL_STR65 DESIGN Number of buffers/inverters should not exceed a user specified
percentage of total cell count.

NTL_STR66 DESIGN Do not instantiate big buffers.

NTL_STR67 DESIGN Max. number of flip-flop that belong to one clock domain.

NTL_STR68 DESIGN Don’t use that cell.

NTL_STR69 DESIGN Do not use feedthrough.

NTL_STR70 DESIGN Set and reset signal must not come from a common source.

NTL_STR72 DESIGN A non-tristate net can have only one non-tristate driver.

NTL_STR73 DESIGN A tristate net can have exactly 1 bus keeper cell.

NTL_STR74 DESIGN A non tristate net can have zero bus keeper.

NTL_STR75 DESIGN Different Vt cells used.

NTL_STR83 DESIGN Use only parallel connections that are supported by PrimeTime.

NTL_STR84 DESIGN Latch enabled by a clock feeds latches enabled by the same
clock.

DFT_002 DFT Internally generated clock detected.

DFT_003 DFT Avoid using both positive-edge and negative-edge triggered
flip-flops in your design

DFT_006 DFT <%value> clocks in block.

DFT_008 DFT Tri-state is detected.

DFT_009 DFT Register all outputs from the block for improved coverage: %s

DFT_017 DFT Synchronous reset/set/load <%item> detected.

DFT_019 DFT Asynchronous reset/set/load <%item> detected.

DFT_021 DFT Latch inferred for <%item>

DFT_022 DFT Incomplete case statement.

TEST_953 DFT Flip-flops with clocks tied to a signal that is not driven by Test
Clock. Flip-flops’ clock signal is not reached by any signal.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

340 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

TEST_954 DFT Latches with clocks tied to a signal that is not driven by Test
Clock. Latch clock signal is not reached by any signal.

TEST_960 DFT Avoid asynchronous feedback loops.

TEST_963 DFT Flip-flops have clock with no off-state controllability. Test clock
reaches flip-flops but does not control them at beginning of
cycle.

TEST_964 DFT Latches have clock with no off-state controllability. Test clock
reaches latches but does not control them at beginning of cycle.

TEST_965 DFT Latches not holding data in off-state. Test Clock reaches latch
<%item> but does not hold data at beginning of cycle.

TEST_966 DFT Flip-flops have no asynch controllability. No Test Asynch
reaches flip-flops’ asynch control pin.

TEST_967 DFT Latches have no asynch controllability. No Test Asynch reaches
latches asynch control pin.

TEST_968 DFT Flip-flops have asynchs that cannot be disabled. Test Asynch
reaches flip-flops but cannot disable their asynch controls.

TEST_969 DFT Latches have asynchs that cannot be disabled. Test Asynch
reaches latches but cannot disable their asynch controls.

TEST_970 DFT Clock affects data inputs of flip-flops.

TEST_971 DFT Clock affects data inputs of latches.

TEST_972 DFT Clock affects both clock and data inputs of flip-flops.

TEST_973 DFT Clock affects both clock and data inputs of latches.

TEST_974 DFT Latch enabled by a clock feeds latches enabled by the same
clock.

TEST_975 DFT Latch enabled by a clock affects data input of flip-flops clocked
by the trailing edge of the same clock.

TEST_976 DFT Latches capture only when more than one clock is on.

TEST_977 DFT Flip-flops capture only when more than one clock is on.

TEST_978 DFT Latch data gates clocks of flip-flops. Combination of latch data
and clock signal to clock a flip-flop is not allowed.

TEST_979 DFT Latch data gates clocks enabling latches. Combination of latch
data and clock signal to clock a latch is not allowed.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 341

Leda User Guide Appendix C: Leda Prebuilt Configurations

TEST_980 DFT Flip-flop data gates clocks to flip-flops. Combination of flip-flop
data and clock signal to clock a flip-flop is not allowed.

TEST_981 DFT Flip-flop data gates clocks enabling latches. Combination of
flip-flop data and clock signal to clock a latch is not allowed.

TEST_994 DFT Clock affects multiple clock or async ports of register.

FM_106 FORMALITY Do not use power operator.

FM_108 FORMALITY Do not use recursive task or function.

FM_111 FORMALITY Do not use v2k enhanced file IO.

VLOG_038 FORMALITY Do not use variable initial value.

FM_1_1 FORMALITY Avoid asynchronous feedback loops.

FM_2_10 FORMALITY Using X,Z values or ? in case items is not recommend (such
items may be ignored by synthesis tools).

FM_2_11 FORMALITY Using signals in casex/z items is not recommended (may be
treated as don’t care by simulation tools).

FM_2_12 FORMALITY Incomplete case_statement using full_case directive is not
recommended (not supported by some simulation tools).

FM_2_13 FORMALITY When case items are duplicated (parallel) do not use
parallel_case directive.

FM_2_15 FORMALITY Using blocking assignments in sequential always block may
generate incorrect logic.

FM_2_16 FORMALITY Using non-blocking assignments in combinational always block
may generate incorrect logic.

FM_2_17 FORMALITY Avoid operand size mismatch assignments.

FM_2_18 FORMALITY Case choice after the default may be ignored by some simulation
tools.

FM_2_19 FORMALITY Using net type other than wire (wand, wor, ...) is not
recommended (can generate mismatch during simulation).

FM_2_1A FORMALITY Redundant signal <%item> in the sensitivity list.

FM_2_1B FORMALITY Missing signal <%item> in the sensitivity list.

FM_2_2 FORMALITY Delays are ignored by synthesis tools.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

342 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

FM_2_20 FORMALITY Do not use event_control in assignments (not handled by all
tools).

FM_2_21 FORMALITY Do not use duplicated port definitions (some tools rename
duplicated ports automatically).

FM_2_22 FORMALITY Possible range overflow.

FM_2_23 FORMALITY Non driven output ports or signals <%context> detected.

FM_2_24 FORMALITY Bit/part select signals detected in sensitivity list: may be ignored
by some synthesis and simulation tools.

FM_2_25 FORMALITY Operator === is treated as ==.

FM_2_26 FORMALITY Operator !== is treated as !=.

FM_2_27 FORMALITY Keyword TRANSPORT is ignored in signal assignment.

FM_2_3 FORMALITY Variables must be initialized before being used. (to prevent latch
inference).

FM_2_32 FORMALITY Do not use latch description in subprogram.

FM_2_4 FORMALITY Assignment to X is not recommended (handled differently by
synthesis and simulation tools.

FM_2_5 FORMALITY Strength values are ignored by synthesis tools.

FM_2_6A FORMALITY Initial statements are ignored by synthesis tools.

FM_2_6B FORMALITY Do not use assignment in net/signal declaration.

FM_2_7 FORMALITY Use named association in port map.

FM_2_8 FORMALITY Multiple drivers detected for <%item>

FM_2_9 FORMALITY Using X,Z values or ? is not recommended (differently handled
by synthesis and simulation tools).

SYN10_1 IEEE_RTL_
SYNTH_
SUBSET

Writing to global variable <%item> in a function is not
supported for synthesis.

SYN10_2 IEEE_RTL_
SYNTH_
SUBSET

Writing to global variable <%item> in a task is not supported for
synthesis.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 343

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN12_1 IEEE_RTL_
SYNTH_
SUBSET

Macromodules are not supported for synthesis.

SYN12_2 IEEE_RTL_
SYNTH_
SUBSET

Input ports must not be assigned a value.

SYN13_1 IEEE_RTL_
SYNTH_
SUBSET

Specify blocks are ignored.

SYN13_4_1 IEEE_RTL_
SYNTH_
SUBSET

Real literals are not allowed.

SYN14_1 IEEE_RTL_
SYNTH_
SUBSET

System task enables are ignored.

SYN14_1_1 IEEE_RTL_
SYNTH_
SUBSET

Illegal attribute <%item>.

SYN14_2 IEEE_RTL_
SYNTH_
SUBSET

System function calls are not supported for synthesis.

SYN14_3_1 IEEE_RTL_
SYNTH_
SUBSET

Functions in STD.TEXTIO are not supported.

SYN1_1_1_A IEEE_RTL_
SYNTH_
SUBSET

Process statements are ignored in entities.

SYN1_1_1_B IEEE_RTL_
SYNTH_
SUBSET

Procedure call statements are ignored in entities.

SYN1_1_1_C IEEE_RTL_
SYNTH_
SUBSET

Assertion statements are ignored in entities.

SYN1_1_2 IEEE_RTL_
SYNTH_
SUBSET

Port default values are ignored.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

344 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN1_1_2_1_A IEEE_RTL_
SYNTH_
SUBSET

Group declarations are illegal in entities.

SYN1_1_2_1_B IEEE_RTL_
SYNTH_
SUBSET

Use clauses are illegal in entities.

SYN1_1_2_1_C IEEE_RTL_
SYNTH_
SUBSET

Disconnection specifications are illegal in entities.

SYN1_1_2_1_D IEEE_RTL_
SYNTH_
SUBSET

Attribute specifications are illegal in entities.

SYN1_1_2_1_E IEEE_RTL_
SYNTH_
SUBSET

Signal declarations are illegal in entities.

SYN1_1_2_1_F IEEE_RTL_
SYNTH_
SUBSET

Attribute declarations are illegal in entities.

SYN1_1_2_1_G IEEE_RTL_
SYNTH_
SUBSET

Group template declarations are illegal in entities.

SYN1_1_2_1_H IEEE_RTL_
SYNTH_
SUBSET

Shared variable declarations are illegal in entities.

SYN1_1_2_1_I IEEE_RTL_
SYNTH_
SUBSET

Constant declarations are illegal in entities.

SYN1_1_2_1_J IEEE_RTL_
SYNTH_
SUBSET

Subtype declarations are illegal in entities.

SYN1_1_2_1_K IEEE_RTL_
SYNTH_
SUBSET

Type declarations are illegal in entities.

SYN1_1_2_1_L IEEE_RTL_
SYNTH_
SUBSET

Subtype declarations are illegal in entities.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 345

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN1_1_2_1_M IEEE_RTL_
SYNTH_
SUBSET

File declarations are illegal in entities.

SYN1_1_2_1_N IEEE_RTL_
SYNTH_
SUBSET

Alias declarations are illegal in entities.

SYN_1_3 IEEE_RTL_
SYNTH_
SUBSET

Only generics of type integer are accepted.

SYN1_2_1_1_A IEEE_RTL_
SYNTH_
SUBSET

File declarations are illegal in architectures.

SYN1_2_1_1_B IEEE_RTL_
SYNTH_
SUBSET

Disconnection specifications are ignored in architectures.

SYN1_2_1_1_C IEEE_RTL_
SYNTH_
SUBSET

Attribute specifications are ignored in architectures.

SYN1_2_1_1_D IEEE_RTL_
SYNTH_
SUBSET

Alias declarations are ignored in architectures.

SYN1_2_1_1_E IEEE_RTL_
SYNTH_
SUBSET

Group declarations are ignored in architectures.

SYN1_2_1_1_F IEEE_RTL_
SYNTH_
SUBSET

Shared variable declarations are ignored in architectures.

SYN1_2_1_1_G IEEE_RTL_
SYNTH_
SUBSET

Group template declarations are ignored in architectures.

SYN1_2_1_2 IEEE_RTL_
SYNTH_
SUBSET

Use clauses can only indicate package declarations.

SYN1_3_1_A IEEE_RTL_
SYNTH_
SUBSET

Group declarations are illegal in configurations declarations.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

346 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN1_3_1_B IEEE_RTL_
SYNTH_
SUBSET

Use clauses are illegal in configurations declarations.

SYN1_3_1_C IEEE_RTL_
SYNTH_
SUBSET

Attribute specifications are illegal in configurations declarations.

SYN1_3_2 IEEE_RTL_
SYNTH_
SUBSET

Component configurations are illegal in block declarations.

SYN1_3_3 IEEE_RTL_
SYNTH_
SUBSET

Use clauses are illegal in block declarations.

SYN1_3_4_A IEEE_RTL_
SYNTH_
SUBSET

Block statement labels are illegal in block declarations.

SYN1_3_4_B IEEE_RTL_
SYNTH_
SUBSET

Generate statement labels are illegal in block declarations.

SYN2_1_1 IEEE_RTL_
SYNTH_
SUBSET

Default values for subprogram parameters are ignored.

SYN2_1_2 IEEE_RTL_
SYNTH_
SUBSET

Impure subprograms are not allowed.

SYN2_1_3 IEEE_RTL_
SYNTH_
SUBSET

Pure keyword cannot be used.

SYN2_2_1_A IEEE_RTL_
SYNTH_
SUBSET

File declarations are illegal in subprograms.

SYN2_2_1_B IEEE_RTL_
SYNTH_
SUBSET

Group template declarations are illegal in subprograms.

SYN2_2_1_C IEEE_RTL_
SYNTH_
SUBSET

Group declarations are illegal in subprograms.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 347

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN2_2_1_D IEEE_RTL_
SYNTH_
SUBSET

Alias declarations are ignored in subprograms.

SYN2_2_2 IEEE_RTL_
SYNTH_
SUBSET

Assertion statements are ignored in subprogram bodies.

SYN2_2_3 IEEE_RTL_
SYNTH_
SUBSET

Report statements are ignored in subprogram bodies.

SYN2_2_4 IEEE_RTL_
SYNTH_
SUBSET

Wait statements are ignored in subprogram bodies.

SYN2_2_5 IEEE_RTL_
SYNTH_
SUBSET

Recursion is illegal unless bounded by a static value.

SYN2_2_6 IEEE_RTL_
SYNTH_
SUBSET

Use clauses can only indicate package declarations.

SYN2_5_1 IEEE_RTL_
SYNTH_
SUBSET

User-defined resolution functions are illegal.

SYN2_5_2_A IEEE_RTL_
SYNTH_
SUBSET

File declarations are illegal in package declarations.

SYN2_5_2_B IEEE_RTL_
SYNTH_
SUBSET

Group declarations are illegal in package declarations.

SYN2_5_2_C IEEE_RTL_
SYNTH_
SUBSET

Alias declarations are ignored in package declarations.

SYN2_5_2_D IEEE_RTL_
SYNTH_
SUBSET

Disconnection specifications are ignored in package
declarations.

SYN2_5_2_E IEEE_RTL_
SYNTH_
SUBSET

Shared variable declarations are illegal in package declarations.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

348 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN2_5_2_F IEEE_RTL_
SYNTH_
SUBSET

Global signal declarations in package declaration cannot be
used.

SYN2_5_2_G IEEE_RTL_
SYNTH_
SUBSET

Group template declarations are illegal in package declarations.

SYN2_5_3 IEEE_RTL_
SYNTH_
SUBSET

Signal declarations in packages must have default value.

SYN2_5_4 IEEE_RTL_
SYNTH_
SUBSET

Use clauses can only indicate package declarations.

SYN2_6_1_A IEEE_RTL_
SYNTH_
SUBSET

Group template declarations are illegal in package bodies.

SYN2_6_1_B IEEE_RTL_
SYNTH_
SUBSET

Shared variable declarations are illegal in package bodies.

SYN2_6_1_C IEEE_RTL_
SYNTH_
SUBSET

File declarations are illegal in package bodies.

SYN2_6_1_D IEEE_RTL_
SYNTH_
SUBSET

Group declarations are illegal in package bodies.

SYN2_6_2 IEEE_RTL_
SYNTH_
SUBSET

Alias declarations are ignored in package bodies.

SYN2_6_3 IEEE_RTL_
SYNTH_
SUBSET

Use clauses can only indicate package declarations.

SYN3_1_1 IEEE_RTL_
SYNTH_
SUBSET

Floating type definitions are ignored.

SYN3_1_2 IEEE_RTL_
SYNTH_
SUBSET

Physical type definitions are ignored.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 349

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN3_1_3 IEEE_RTL_
SYNTH_
SUBSET

Integer value must be in range -(2**31-1) to (2**31-1).

SYN3_1_4 IEEE_RTL_
SYNTH_
SUBSET

Null ranges are illegal.

SYN3_1_5 IEEE_RTL_
SYNTH_
SUBSET

Predefined type SEVERITY_LEVEL is ignored.

SYN3_1_6 IEEE_RTL_
SYNTH_
SUBSET

Predefined type STD_FILE_OPEN_KIND is illegal.

SYN3_1_7 IEEE_RTL_
SYNTH_
SUBSET

Predefined type STD_FILE_OPEN_STATUS is illegal.

SYN3_2_10 IEEE_RTL_
SYNTH_
SUBSET

trior nets are not supported for synthesis.

SYN3_2_1_A IEEE_RTL_
SYNTH_
SUBSET

Multi-dimension arrays are illegal.

SYN3_2_1_B IEEE_RTL_
SYNTH_
SUBSET

trireg nets are not supported for synthesis.

SYN3_2_2 IEEE_RTL_
SYNTH_
SUBSET

Drive strengths in net declaration are ignored.

SYN3_2_3 IEEE_RTL_
SYNTH_
SUBSET

Charge strengths in net declaration are ignored.

SYN3_2_4 IEEE_RTL_
SYNTH_
SUBSET

Delays in net declaration are ignored.

SYN3_2_5 IEEE_RTL_
SYNTH_
SUBSET

Delays (delay2) in net declaration are ignored.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

350 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN3_2_6 IEEE_RTL_
SYNTH_
SUBSET

Delays (delay3) in net declaration are ignored.

SYN3_2_7 IEEE_RTL_
SYNTH_
SUBSET

tri1 nets are not supported for synthesis.

SYN3_2_8 IEEE_RTL_
SYNTH_
SUBSET

triand nets are not supported for synthesis.

SYN3_2_9 IEEE_RTL_
SYNTH_
SUBSET

tri0 nets are not supported for synthesis.

SYN3_3_1 IEEE_RTL_
SYNTH_
SUBSET

Access type definitions are ignored.

SYN3_4_1 IEEE_RTL_
SYNTH_
SUBSET

File type definitions are ignored.

SYN3_9_1 IEEE_RTL_
SYNTH_
SUBSET

Time declarations are not supported for synthesis.

SYN3_9_2 IEEE_RTL_
SYNTH_
SUBSET

Real declarations are not supported for synthesis.

SYN3_9_3 IEEE_RTL_
SYNTH_
SUBSET

Realtime declarations are not supported for synthesis.

SYN4_1_1_A IEEE_RTL_
SYNTH_
SUBSET

Incomplete type declarations are ignored.

SYN4_1_1_B IEEE_RTL_
SYNTH_
SUBSET

Expressions of type mintypmax are ignored.

SYN4_1_2 IEEE_RTL_
SYNTH_
SUBSET

The case equality operator ‘===’ is not supported in binary
operations.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 351

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN4_1_3 IEEE_RTL_
SYNTH_
SUBSET

The case inequality operator ‘!==’ is not supported in binary
operations.

SYN4_1_4 IEEE_RTL_
SYNTH_
SUBSET

Real numbers are not supported for synthesis.

SYN4_3_1_1_1 IEEE_RTL_
SYNTH_
SUBSET

Deferred constant declarations are illegal.

SYN4_3_1_2_1 IEEE_RTL_
SYNTH_
SUBSET

Initial values for signal declarations are ignored.

SYN4_3_1_2_2_
A

IEEE_RTL_
SYNTH_
SUBSET

Bus signal kind is ignored.

SYN4_3_1_2_2_
B

IEEE_RTL_
SYNTH_
SUBSET

Register signal kind is ignored.

SYN4_3_1_3_1 IEEE_RTL_
SYNTH_
SUBSET

Initial values for variable declarations are ignored.

SYN4_3_1_3_2 IEEE_RTL_
SYNTH_
SUBSET

Shared variable declarations are illegal.

SYN4_3_1_4_1 IEEE_RTL_
SYNTH_
SUBSET

File declarations are illegal.

SYN4_3_2_1 IEEE_RTL_
SYNTH_
SUBSET

Buffer mode will be transformed to out mode by synthesis tools.

SYN4_3_2_1_1 IEEE_RTL_
SYNTH_
SUBSET

Illegal association element in association list.

SYN4_3_2_1_2 IEEE_RTL_
SYNTH_
SUBSET

Actuals of mode in and out cannot be same object.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

352 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN4_3_2_2 IEEE_RTL_
SYNTH_
SUBSET

Linkage mode is illegal in interface declarations.

SYN4_3_2_3 IEEE_RTL_
SYNTH_
SUBSET

Bus keyword is illegal in interface declarations.

SYN4_3_2_4 IEEE_RTL_
SYNTH_
SUBSET

Default expressions are ignored in interface signal declaration.

SYN4_3_2_5 IEEE_RTL_
SYNTH_
SUBSET

Default expressions are ignored in interface variable declaration.

SYN4_3_2_6 IEEE_RTL_
SYNTH_
SUBSET

Interface file declarations are ignored.

SYN4_3_3_1 IEEE_RTL_
SYNTH_
SUBSET

Alias declarations are ignored.

SYN4_4_1 IEEE_RTL_
SYNTH_
SUBSET

User defined attribute declarations are illegal.

SYN4_6_1 IEEE_RTL_
SYNTH_
SUBSET

Group template declarations are illegal.

SYN4_7_1 IEEE_RTL_
SYNTH_
SUBSET

Group declarations are illegal.

SYN5_1_1 IEEE_RTL_
SYNTH_
SUBSET

Others keyword not allowed in attribute specification.

SYN5_1_2 IEEE_RTL_
SYNTH_
SUBSET

All keyword not allowed in attribute specification.

SYN5_2_1 IEEE_RTL_
SYNTH_
SUBSET

Configuration specifications are ignored.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 353

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN5_3_1 IEEE_RTL_
SYNTH_
SUBSET

Disconnection specifications are ignored.

SYN6_1_1 IEEE_RTL_
SYNTH_
SUBSET

Do not use assignment in net declaration.

SYN6_1_2 IEEE_RTL_
SYNTH_
SUBSET

Drive strengths in continuous assign statements are ignored.

SYN6_1_3 IEEE_RTL_
SYNTH_
SUBSET

Delay3 values in continuous assign statements are ignored.

SYN6_1_4 IEEE_RTL_
SYNTH_
SUBSET

Delay2 values in continuous assign statements are ignored.

SYN6_1_5 IEEE_RTL_
SYNTH_
SUBSET

Delay values in continuous assign statements are ignored.

SYN6_6_1 IEEE_RTL_
SYNTH_
SUBSET

Illegal attribute name.

SYN6_6_2 IEEE_RTL_
SYNTH_
SUBSET

Expressions in attribute names are illegal.

SYN7_1_1 IEEE_RTL_
SYNTH_
SUBSET

nmos switch instantiations are not supported for synthesis.

SYN7_1_10 IEEE_RTL_
SYNTH_
SUBSET

rtranif switch instantiations are not supported for synthesis.

SYN7_1_11 IEEE_RTL_
SYNTH_
SUBSET

cmos switch instantiations are not supported for synthesis.

SYN7_1_12 IEEE_RTL_
SYNTH_
SUBSET

rcmos switch instantiations are not supported for synthesis.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

354 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN7_1_13 IEEE_RTL_
SYNTH_
SUBSET

pull (pullup and pulldown) gate instantiations are not supported
for synthesis.

SYN7_1_14 IEEE_RTL_
SYNTH_
SUBSET

Drive strengths in n input gate instantiations are ignored.

SYN7_1_15 IEEE_RTL_
SYNTH_
SUBSET

Drive strengths in n output gate instantiations are ignored.

SYN7_1_16 IEEE_RTL_
SYNTH_
SUBSET

Drive strengths in enable gate instantiations are ignored.

SYN7_1_17 IEEE_RTL_
SYNTH_
SUBSET

Delay2 values in n input gate instantiations are ignored.

SYN7_1_18 IEEE_RTL_
SYNTH_
SUBSET

Delay values in n input gate instantiations are ignored.

SYN7_1_19 IEEE_RTL_
SYNTH_
SUBSET

Delay2 values in n output gate instantiations are ignored.

SYN7_1_2 IEEE_RTL_
SYNTH_
SUBSET

pmos switch instantiations are not supported for synthesis.

SYN7_1_20 IEEE_RTL_
SYNTH_
SUBSET

Delay values in n_output gate instantiations are ignored.

SYN7_1_21 IEEE_RTL_
SYNTH_
SUBSET

Delay3 values in enable gate instantiations are ignored.

SYN7_1_22 IEEE_RTL_
SYNTH_
SUBSET

Delay2 values in enable gate instantiations are ignored.

SYN7_1_23 IEEE_RTL_
SYNTH_
SUBSET

Delay values in enable gate instantiations are ignored.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 355

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN7_1_3 IEEE_RTL_
SYNTH_
SUBSET

rnmos switch instantiations are not supported for synthesis.

SYN7_1_4 IEEE_RTL_
SYNTH_
SUBSET

rpmos switch instantiations are not supported for synthesis.

SYN7_1_5 IEEE_RTL_
SYNTH_
SUBSET

tran switch instantiations are not supported for synthesis.

SYN7_1_6 IEEE_RTL_
SYNTH_
SUBSET

rtans switch instantiations are not supported for synthesis.

SYN7_1_7 IEEE_RTL_
SYNTH_
SUBSET

tranif0 switch instantiations are not supported for synthesis.

SYN7_1_8 IEEE_RTL_
SYNTH_
SUBSET

tranif1 switch instantiations are not supported for synthesis.

SYN7_1_9 IEEE_RTL_
SYNTH_
SUBSET

rtranif0 switch instantiations are not supported for synthesis.

SYN7_2_1 IEEE_RTL_
SYNTH_
SUBSET

STD.STANDARD.XNOR operator not allowed.

SYN7_2_2 IEEE_RTL_
SYNTH_
SUBSET

Standard shift operators not allowed.

SYN7_2_6_1_A IEEE_RTL_
SYNTH_
SUBSET

RHS of operators /,REM and MOD must be static power of 2.

SYN7_2_6_1_B IEEE_RTL_
SYNTH_
SUBSET

Operators /,REM and MOD must have positive operands.

SYN7_2_6_1_C IEEE_RTL_
SYNTH_
SUBSET

LHS of operator ** must have static value 2.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

356 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN7_2_6_1_D IEEE_RTL_
SYNTH_
SUBSET

RHS of operator ** must be positive.

SYN7_3_1_1 IEEE_RTL_
SYNTH_
SUBSET

Null literals are illegal.

SYN7_3_2_1_1 IEEE_RTL_
SYNTH_
SUBSET

Record aggregates are illegal.

SYN8_10_1 IEEE_RTL_
SYNTH_
SUBSET

Labels are not allowed in next statements.

SYN8_11_1 IEEE_RTL_
SYNTH_
SUBSET

Labels are not allowed in exit statements.

SYN8_12_1 IEEE_RTL_
SYNTH_
SUBSET

Labels are not allowed in return statements.

SYN8_1_1_A IEEE_RTL_
SYNTH_
SUBSET

Labels are not allowed in wait statements.

SYN8_1_1_B IEEE_RTL_
SYNTH_
SUBSET

UDP declarations are not supported for synthesis.

SYN8_1_2 IEEE_RTL_
SYNTH_
SUBSET

Sensitivity clauses are not allowed in wait statements.

SYN8_1_3 IEEE_RTL_
SYNTH_
SUBSET

Illegal condition in wait_ statement.

SYN8_1_4 IEEE_RTL_
SYNTH_
SUBSET

Timeout clauses are ignored in wait statements.

SYN8_2_1 IEEE_RTL_
SYNTH_
SUBSET

Assertion statements are ignored.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 357

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN8_2_2 IEEE_RTL_
SYNTH_
SUBSET

Labels on assertion statements are not supported.

SYN8_3_1 IEEE_RTL_
SYNTH_
SUBSET

Report statements are illegal.

SYN8_4_1 IEEE_RTL_
SYNTH_
SUBSET

Multiple waveform elements are not supported.

SYN8_4_1_1 IEEE_RTL_
SYNTH_
SUBSET

Null waveforms are not supported.

SYN8_4_1_2 IEEE_RTL_
SYNTH_
SUBSET

After expressions in waveforms are not supported.

SYN8_4_3 IEEE_RTL_
SYNTH_
SUBSET

Labels on signal assignments statements are not supported.

SYN8_4_4 IEEE_RTL_
SYNTH_
SUBSET

Keyword reject is not supported.

SYN8_4_5 IEEE_RTL_
SYNTH_
SUBSET

Keyword inertial is not supported.

SYN8_4_6 IEEE_RTL_
SYNTH_
SUBSET

Unaffected waveforms are not supported.

SYN8_5_1 IEEE_RTL_
SYNTH_
SUBSET

Labels on variable assignment statements are not supported.

SYN8_6_1_A IEEE_RTL_
SYNTH_
SUBSET

UDP instantiations are not supported for synthesis.

SYN8_6_1_B IEEE_RTL_
SYNTH_
SUBSET

Labels are not allowed in procedure call statements.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

358 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN8_7_1 IEEE_RTL_
SYNTH_
SUBSET

Labels are not allowed in if statements.

SYN8_8_1 IEEE_RTL_
SYNTH_
SUBSET

Labels are not allowed in case statements.

SYN8_9_1 IEEE_RTL_
SYNTH_
SUBSET

For loops must have globally static bounds.

SYN8_9_2 IEEE_RTL_
SYNTH_
SUBSET

Wait statements cannot appear inside for loops.

SYN8_9_3 IEEE_RTL_
SYNTH_
SUBSET

While loops are not supported.

SYN9_1 IEEE_RTL_
SYNTH_
SUBSET

Illegal always construct: Does not model any combinational
logic or sequential logic.

SYN9_10 IEEE_RTL_
SYNTH_
SUBSET

A falling-edge clock expression should be of the form ‘negedge
<clock_name>’

SYN9_11 IEEE_RTL_
SYNTH_
SUBSET

Multiple event lists in an always statement are not supported for
synthesis.

SYN9_12 IEEE_RTL_
SYNTH_
SUBSET

Polarity mismatch for asynchronous reset/set/load <%context> :
use ‘if(<%context>)’.

SYN9_13 IEEE_RTL_
SYNTH_
SUBSET

Polarity mismatch for asynchronous reset/set/load <%context> :
use ‘if(<%context>)’, ‘if(~<%context>’ or
‘if(<%context>==1’b0)’.

SYN9_14 IEEE_RTL_
SYNTH_
SUBSET

Level sensitive events are not allowed in a sequential always
block.

SYN9_15 IEEE_RTL_
SYNTH_
SUBSET

An asynchronous sequential always block must have one clock
signal exactly. <%value> clocks have been detected.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 359

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN9_16 IEEE_RTL_
SYNTH_
SUBSET

Initial constructs are ignored.

SYN9_17 IEEE_RTL_
SYNTH_
SUBSET

Procedural continuous assign statements are not supported for
synthesis.

SYN9_18 IEEE_RTL_
SYNTH_
SUBSET

Procedural continuous deassign statements are not supported for
synthesis.

SYN9_19 IEEE_RTL_
SYNTH_
SUBSET

Procedural continuous force statements are not supported for
synthesis.

SYN9_1_1 IEEE_RTL_
SYNTH_
SUBSET

Guard expressions not allowed in block statements.

SYN9_1_2_A IEEE_RTL_
SYNTH_
SUBSET

Port block headers are not supported.

SYN9_1_2_B IEEE_RTL_
SYNTH_
SUBSET

Generic block headers are not supported.

SYN9_1_3_A IEEE_RTL_
SYNTH_
SUBSET

Alias declarations are ignored in block statements.

SYN9_1_3_B IEEE_RTL_
SYNTH_
SUBSET

Disconnection specifications are ignored in block statements.

SYN9_1_3_C IEEE_RTL_
SYNTH_
SUBSET

Group template declarations are not supported in block
statements.

SYN9_1_3_D IEEE_RTL_
SYNTH_
SUBSET

File declarations are not supported in block statements.

SYN9_1_3_E IEEE_RTL_
SYNTH_
SUBSET

Configuration specifications are not supported in block
statements.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

360 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN9_1_3_F IEEE_RTL_
SYNTH_
SUBSET

Group declarations are not supported in block statements.

SYN9_1_3_G IEEE_RTL_
SYNTH_
SUBSET

Shared variable declarations are not supported in block
statements.

SYN9_2 IEEE_RTL_
SYNTH_
SUBSET

Missing or redundant signal <%item> in the sensitivity list of an
always block.

SYN9_20 IEEE_RTL_
SYNTH_
SUBSET

Procedural continuous release statements are not supported for
synthesis.

SYN9_21 IEEE_RTL_
SYNTH_
SUBSET

Repeat event controls in timing control statements are not
supported for synthesis.

SYN9_22 IEEE_RTL_
SYNTH_
SUBSET

Delay values are ignored in synthesis.

SYN9_23 IEEE_RTL_
SYNTH_
SUBSET

Forever loop statements are not supported for synthesis.

SYN9_24 IEEE_RTL_
SYNTH_
SUBSET

Repeat loop statements are not supported for synthesis.

SYN9_25 IEEE_RTL_
SYNTH_
SUBSET

While loop statements are not supported for synthesis.

SYN9_26 IEEE_RTL_
SYNTH_
SUBSET

Expression bound in for loop statements should be statically
computable.

SYN9_27 IEEE_RTL_
SYNTH_
SUBSET

Initial reg assignment bound in for loop statements should be
statically computable.

SYN9_28 IEEE_RTL_
SYNTH_
SUBSET

Wait statements are not supported for synthesis.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 361

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN9_29 IEEE_RTL_
SYNTH_
SUBSET

Event triggers are not supported for synthesis.

SYN9_2_1 IEEE_RTL_
SYNTH_
SUBSET

Postponed processes are not supported.

SYN9_2_2_A IEEE_RTL_
SYNTH_
SUBSET

Group template declarations are not supported in process
statements.

SYN9_2_2_B IEEE_RTL_
SYNTH_
SUBSET

Group declarations are not supported in process statements.

SYN9_2_2_C IEEE_RTL_
SYNTH_
SUBSET

Alias declarations are ignored in process statements.

SYN9_2_2_D IEEE_RTL_
SYNTH_
SUBSET

Use clauses in process statements can only refer to package
declarations.

SYN9_2_2_E IEEE_RTL_
SYNTH_
SUBSET

File declarations are not supported in process statements.

SYN9_2_3 IEEE_RTL_
SYNTH_
SUBSET

Variable is read first on at least one flow of control or is read
without being initialized within the process body.

SYN9_2_4 IEEE_RTL_
SYNTH_
SUBSET

Only one clock expression per process is allowed.

SYN9_3 IEEE_RTL_
SYNTH_
SUBSET

Do not mix blocking and non-blocking assignments in a
combinational always block.

SYN9_30 IEEE_RTL_
SYNTH_
SUBSET

Fork-join block are not supported for synthesis.

SYN9_31 IEEE_RTL_
SYNTH_
SUBSET

Event declarations are not supported for synthesis.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

362 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN9_32 IEEE_RTL_
SYNTH_
SUBSET

The always statement must be followed by an event control (@)

SYN9_3_1 IEEE_RTL_
SYNTH_
SUBSET

Postponed concurrent procedure calls are not supported.

SYN9_4 IEEE_RTL_
SYNTH_
SUBSET

Do not use blocking assignments for variables modeling
level-sensitive storage devices (latches).

SYN9_4_1 IEEE_RTL_
SYNTH_
SUBSET

Postponed concurrent assertion statements are not supported.

SYN9_4_2 IEEE_RTL_
SYNTH_
SUBSET

Concurrent assertion statements are ignored.

SYN9_5 IEEE_RTL_
SYNTH_
SUBSET

A level-sensitive storage device (latch) may be inferred for
<%item>.

SYN9_5_1_1 IEEE_RTL_
SYNTH_
SUBSET

Postponed conditional signal assignments are not supported.

SYN9_5_1_2 IEEE_RTL_
SYNTH_
SUBSET

Illegal conditional waveform.

SYN9_5_1_3_A IEEE_RTL_
SYNTH_
SUBSET

Inertial keyword on conditional signal assignments is ignored.

SYN9_5_1_3_B IEEE_RTL_
SYNTH_
SUBSET

Reject expressions on conditional signal assignments is ignored.

SYN9_5_1_3_C IEEE_RTL_
SYNTH_
SUBSET

Transport keyword on conditional signal assignments is ignored.

SYN9_5_1_3_D IEEE_RTL_
SYNTH_
SUBSET

Guarded keyword on conditional signal assignments is ignored.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 363

Leda User Guide Appendix C: Leda Prebuilt Configurations

SYN9_5_1_4 IEEE_RTL_
SYNTH_
SUBSET

Target signal cannot also be a source in conditional signal
assignment.

SYN9_5_2_1 IEEE_RTL_
SYNTH_
SUBSET

Postponed selected signal assignments are not supported.

SYN9_5_2_2 IEEE_RTL_
SYNTH_
SUBSET

Illegal selection waveform.

SYN9_5_2_3_A IEEE_RTL_
SYNTH_
SUBSET

Transport keyword on selected signal assignments is ignored.

SYN9_5_2_3_B IEEE_RTL_
SYNTH_
SUBSET

Inertial keyword on selected signal assignments is ignored.

SYN9_5_2_3_C IEEE_RTL_
SYNTH_
SUBSET

Reject expressions on selected signal assignments is ignored.

SYN9_5_2_3_D IEEE_RTL_
SYNTH_
SUBSET

Guarded keyword on selected signal assignments is ignored.

SYN9_5_2_4 IEEE_RTL_
SYNTH_
SUBSET

Target signal cannot also be a source in selected signal
assignment.

SYN9_6 IEEE_RTL_
SYNTH_
SUBSET

A sequential always block must have one clock signal exactly.
<%value> clocks have been detected.

SYN9_6_1 IEEE_RTL_
SYNTH_
SUBSET

Entity names are not supported in component instantiation
statements.

SYN9_6_2 IEEE_RTL_
SYNTH_
SUBSET

Configuration names are not supported in component
instantiation statements.

SYN9_7 IEEE_RTL_
SYNTH_
SUBSET

Do not use blocking assignments for variables modeling
edge-sensitive storage devices (flip-flops).

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

364 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SYN9_7_1 IEEE_RTL_
SYNTH_
SUBSET

Block declarative part in generate statement is not supported.

SYN9_8 IEEE_RTL_
SYNTH_
SUBSET

Only one edge event should be present in the event list of a
synchronous always block.

SYN9_9 IEEE_RTL_
SYNTH_
SUBSET

A clock expression should be of the form ‘posedge
<clock_name>’.

B_1000 LEDA Module/unit without I/Os.

B_1001 LEDA Reading from output port <%item>.

B_1002 LEDA Port declaration <%item> is unused or partially unused.

B_1005 LEDA No bidirectional port allowed.

B_1006 LEDA Tristates are only allowed in specified modules/units.

B_1007 LEDA Tristate port detected.

B_1008 LEDA Tristate signal detected.

B_1009 LEDA Tristate output detected.

B_1010 LEDA Feedthrough detected for port <%context>.

B_1011 LEDA Module instantiations is not fully bound. Port <%format> is not
completely connected.

B_1013 LEDA Signal <%context> should not drive multiple ports.

B_1200 LEDA Nested event control in a task.

B_1201 LEDA Multiple event control statement in a task.

B_1202 LEDA <%value> clocks in this unit detected.

B_1204 LEDA Multi-bit expression used as clock.

B_1205 LEDA The clock signal <%item> is not coming directly from a port of
the current unit.

B_1206 LEDA Do not use event definitions for clocks.

B_1400 LEDA Asynchronous reset/set/load signal <%item> is not a primary
input to the current unit.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 365

Leda User Guide Appendix C: Leda Prebuilt Configurations

B_1401 LEDA Synchronous reset/set/load signal <%item> is not a primary
input to the current unit.

B_1402 LEDA Do not use event definitions for asynchronous resets/sets/loads.

B_1403 LEDA Flip-flop assigned but not initialized.

B_1405 LEDA <%value> asynchronous resets in this unit detected.

B_1406 LEDA <%value> synchronous resets in this unit detected.

B_1409 LEDA <%value> asynchronous resets in always/process block.

B_1410 LEDA <%value> synchronous resets in always/process block.

B_1411 LEDA <%value> asynchronous sets in this unit detected.

B_1412 LEDA <%value> synchronous sets in this unit detected.

B_1413 LEDA <%value> asynchronous sets in always/process block.

B_1414 LEDA <%value> synchronous sets in always/process block.

B_1415 LEDA <%value> asynchronous loads in this unit detected.

B_1416 LEDA <%value> synchronous loads in this unit detected.

B_1417 LEDA <%value> asynchronous loads in always/process block.

B_1418 LEDA <%value> synchronous loads in always/process block.

B_2000 LEDA System tasks are not allowed.

B_2001 LEDA Shift by a non constant value is not allowed.

B_2002 LEDA Disable statement in always construct may not be synthesizable.

B_2003 LEDA Disable statement in task may not be synthesizable.

B_2004 LEDA Disable statement in function may not be synthesizable.

B_2005 LEDA Function of type real are not synthesizable.

B_2006 LEDA Event declarations are not allowed.

B_2007 LEDA Same operands on both sides of assignment detected.

B_2008 LEDA Delays in signal assignment are ignored by synthesis tool.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

366 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

B_2009 LEDA Delays in conditional signal assignment are ignored by synthesis
tool.

B_2010 LEDA Non synthesizable operator === !== encountered.

B_2010 LEDA Variable is not always initialized in process body before being
read.

B_3001 LEDA Array of integer is not allowed.

B_3002 LEDA Array of time is not allowed.

B_3003 LEDA Test expression in if_statement is expected to be one bit wide.

B_3004_A LEDA Unrecommended blocking assignment (converting integer to
real).

B_3005_A LEDA Unrecommended blocking assignment (converting unsigned to
real).

B_3005_B LEDA Unrecommended non blocking assignment (converting unsigned
to real).

B_3006_A LEDA Unrecommended blocking assignment (converting real to
integer).

B_3007_A LEDA Unrecommended blocking assignment (converting unsigned to
integer).

B_3008_A LEDA Unrecommended blocking assignment (converting integer to
unsigned).

B_3009_A LEDA Unrecommended blocking assignment (converting real to
unsigned).

B_3010 LEDA Loop index must be declared as integer.

B_3200 LEDA Unequal length operand in bit/arithmetic operator.

B_3201 LEDA Unequal length operand in comparison operator.

B_3202 LEDA Delay is not constant expression.

B_3203 LEDA The expression in for loop must not be constant.

B_3204 LEDA ? in based number constant is not allowed.

B_3206 LEDA X in based number constant.

B_3207 LEDA Z in based number constant.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 367

Leda User Guide Appendix C: Leda Prebuilt Configurations

B_3208 LEDA Unequal length in LHS and RHS in assignment.

B_3209 LEDA Unequal length port and connection in module instantiation.

B_3210 LEDA Unequal length arguments in function call or task enable.

B_3211 LEDA Unequal length between case expression and case item condition
in case, casex or casez.

B_3400 LEDA Empty block found: No statements in block.

B_3401 LEDA Blocking delay not allowed in non-blocking assignment.

B_3402 LEDA Task assigns global variable <%item>.

B_3407 LEDA No null statements in process statement.

B_3408 LEDA Case condition expression should not be a constant.

B_3409 LEDA While condition expression is constant.

B_3410 LEDA X in case expression.

B_3411 LEDA Assignment to a supply0 type net.

B_3412 LEDA Assignment to a supply1 type net.

B_3413 LEDA Task call in a combinational block.

B_3414 LEDA Task call in a sequential block.

B_3415 LEDA <%context> has no drivers. It should have at least one.

B_3416 LEDA Use blocking assignments in combinatorial block.

B_3417 LEDA Use non-blocking assignments in sequential block.

B_3418 LEDA Redundant signal <%item> in sensitivity list.

B_3419 LEDA Missing signal <%item> in sensitivity list.

B_3601 LEDA <%value> blocks used to code state machine. Two blocks should
be used.

B_3602 LEDA Moore style description of state machine is recommended.

B_3604 LEDA Assign a default state to the state machines.

B_3605_A LEDA Use parameter declarations to define the state vector of a state
machine.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

368 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

B_3605_B LEDA Use an enumerated type to define the state vector of a state
machine.

B_3607 LEDA The number of states in a state machine should be a power of 2.

B_3608 LEDA The number of states in a state machine should be less than 40.

B_3609 LEDA In state machine, keep FSM logic and non-FSM logic apart.

B_4001 LEDA Process blocks should have a label.

B_4002 LEDA Comments are required on preceding line of function or
procedure declaration.

B_5000 LEDA No non-blocking assignments in always_comb.

B_5001 LEDA No non-blocking assignments in always_latch.

B_5005 LEDA No latches or flip-flops in always_comb.

B_5006 LEDA No flip-flops in always_latch.

B_5007 LEDA No event controls or delays in always_comb.

B_5008 LEDA No event controls or delays in always_latch.

B_5009 LEDA Only one event control in always_ff.

B_5010 LEDA There must be at least one latch in always_latch.

B_5011 LEDA There must be at least one flip-flop in always_ff.

B_5012 LEDA always_comb, always_latch, always_ff statements used - a
SystemVerilog feature.

B_5015 LEDA Do-while loop used - a SystemVerilog feature.

B_5016 LEDA unique/priority keywords used for conditional and case
statements not allowed - a SystemVerilog feature.

B_5018 LEDA Scope/lifetime specified for functions &tasks - a SystemVerilog
feature.

B_5021 LEDA Assignment expression in event control - a SystemVerilog
feature.

B_5022 LEDA Continuous assign used for variables - a SystemVerilog feature.

B_5025 LEDA Process statement used - a SystemVerilog feature.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 369

Leda User Guide Appendix C: Leda Prebuilt Configurations

B_5027 LEDA Array querying functions used - a SystemVerilog feature.

B_5028 LEDA Input mode - a default mode for task/function argument
direction.

B_5101 LEDA Enumerated data types used - a SystemVerilog feature.

B_5102 LEDA Constant data type used - a SystemVerilog feature.

B_5103 LEDA Structure data type used - a SystemVerilog feature.

B_5104 LEDA Union data type used - a SystemVerilog feature.

B_5105 LEDA 4-state logic data type used - a SystemVerilog feature.

B_5106 LEDA Integer data type used - a SystemVerilog feature.

B_5107 LEDA Casting used - a SystemVerilog feature.

B_5108 LEDA void data types used - a SystemVerilog feature.

B_5109 LEDA User defined data types used - a SystemVerilog feature.

B_5200 LEDA Interface used - a SystemVerilog feature.

B_5201 LEDA Interface ports used - a SystemVerilog feature.

B_5202 LEDA modports in interface declaration detected.

B_5203 LEDA Tasks and functions in mod ports detected.

B_5204 LEDA Export & Import of tasks and functions in interfaces detected.

B_5205 LEDA No modport interface.

B_5206 LEDA Nested module found - a SystemVerilog feature.

B_5207 LEDA Implicit name port connections used - a SystemVerilog feature.

B_5208 LEDA Implicit .* port connections used - a SystemVerilog feature.

C_1000 LEDA Asynchronous feedback loop detected.

C_1001 LEDA Flip-flop with fixed value data input is detected.

C_1002 LEDA Latch with fixed value data input is detected.

C_1003 LEDA Latch detected in design (inferred or instantiated).

C_1004 LEDA Glue logic at top-level is detected.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

370 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

C_1005 LEDA Top-level outputs are not registered.

C_1006 LEDA Top-level inputs are not registered.

C_1007 LEDA Pulse generator detected.

C_1009 LEDA Multiple non-tristate drivers to signal <%item> detected.

C_1200 LEDA Only one clock allowed in the design. <%value> clocks have
been identified.

C_1201 LEDA Clocks must not be used as data.

C_1202 LEDA Data must be registered by 2 flip-flops when changing clock
domain.

C_1203 LEDA Internally generated clock detected. (chip level).

C_1204 LEDA No gated clock except in clock generator CKGEN.

C_1208 LEDA Multiplexed clock is detected.

C_1209 LEDA Register with fixed value clock is detected.

C_1400 LEDA Only 1 reset/set/load allowed in the design. <%value> have been
detected.

C_1401 LEDA Avoid gated resets/sets/loads in design.

C_1402 LEDA No gated reset/set/load except in reset/set/load generator
RSTGEN.

C_1403 LEDA Buffers must not be explicitly added to reset/set/load paths.

C_1404 LEDA Signal is used both as synchronous and asynchronous reset/set/
load.

C_1405 LEDA Register with fixed value reset/set/load is detected.

C_1406 LEDA Register with no reset/set/load is detected.

G_5210_2 RMM_RTL_
CODING_
GUIDELINES

Declare one port per line.

G_5214_2 RMM_RTL_
CODING_
GUIDELINES

Use vector operations on arrays rather than loops.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 371

Leda User Guide Appendix C: Leda Prebuilt Configurations

G_521_11 RMM_RTL_
CODING_
GUIDELINES

Use same name/similar names for ports (<%formal> and signals
(<actual>.

G_523_1_D RMM_RTL_
CODING_
GUIDELINES

Port assignments are not allowed in testbench architectures.

G_531_2 RMM_RTL_
CODING_
GUIDELINES

Use std_logic than std_ulogic when possible.

G_531_4 RMM_RTL_
CODING_
GUIDELINES

Types bit and bit_vector should not be used.

G_532_1 RMM_RTL_
CODING_
GUIDELINES

Do not use literals in statements, use constants instead.

G_533_1 RMM_RTL_
CODING_
GUIDELINES

All definitions for a design should be in a separate package.

G_536_2 RMM_RTL_
CODING_
GUIDELINES

Do not instantiate verilog predefined gate <%item> in the
design.

G_537_1 RMM_RTL_
CODING_
GUIDELINES

Generate statements are not allowed.

G_537_2 RMM_RTL_
CODING_
GUIDELINES

Block statements are not allowed.

G_537_3 RMM_RTL_
CODING_
GUIDELINES

Do not use complex expressions to initialize constants.

G_541_1 RMM_RTL_
CODING_
GUIDELINES

Avoid using both positive-edge and negative-edge triggered
flip-flops in your design.

G_542_1 RMM_RTL_
CODING_
GUIDELINES

Buffers should not be explicitly added to clock path.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

372 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

G_543_1 RMM_RTL_
CODING_
GUIDELINES

Gated clocks are not allowed in the design.

G_544_1 RMM_RTL_
CODING_
GUIDELINES

Clocks should be visible from top unit.

G_546_1 RMM_RTL_
CODING_
GUIDELINES

Avoid internally generated reset/set/load <%item>.

G_551_1_B RMM_RTL_
CODING_
GUIDELINES

The always keyword must be followed by an event list @(...) in a
sequential block.

G_551_1_C RMM_RTL_
CODING_
GUIDELINES

Use ‘if (%context> == ‘b0)’ or ‘if (%context> == ‘b1)’ for
synchronous reset/set/load expressions: <%context>.

G_551_1_D RMM_RTL_
CODING_
GUIDELINES

Use ‘if (%context> == ‘b1)’ for rising edge asynchronous reset/
set/load expressions.

G_551_1_E RMM_RTL_
CODING_
GUIDELINES

Use ‘if (%context> == ‘b0)’ for falling edge asynchronous reset/
set/load expressions.

G_551_1_F RMM_RTL_
CODING_
GUIDELINES

Use if (<%item> = ‘1’) or if(<%item> = ‘0’) for reset/set/load
expressions.

G_551_1_G RMM_RTL_
CODING_
GUIDELINES

Do not use initial constructs to initialize signals.

G_551_1_H RMM_RTL_
CODING_
GUIDELINES

There should be exactly one clock signal in the sensitivity list of
a sequential block. <%value> clocks have been detected.

G_551_1_I RMM_RTL_
CODING_
GUIDELINES

There should be at most one asynchronous reset/set/load signal
in a sequential bock.

G_551_1_J RMM_RTL_
CODING_
GUIDELINES

An asynchronous reset/set/load signal should be preceded by the
keyword ‘posedge or ‘negedge in the sensitivity list of a
sequential block.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 373

Leda User Guide Appendix C: Leda Prebuilt Configurations

G_551_1_K RMM_RTL_
CODING_
GUIDELINES

There should be at most one synchronous reset/set/load signal in
a sequential bock.

G_551_1_L RMM_RTL_
CODING_
GUIDELINES

Always block with event and level expression detected in
sensitivity list. This block is not synthesizable.

G_553_1 RMM_RTL_
CODING_
GUIDELINES

Avoid asynchronous feedback loops.

G_556_1 RMM_RTL_
CODING_
GUIDELINES

Use signals instead of variables (suitable for synthesis).

G_559_1 RMM_RTL_
CODING_
GUIDELINES

<%value> blocks used to code state machine. Two block should
be used.

G_559_2_A RMM_RTL_
CODING_
GUIDELINES

Use parameter statements to define the state vector of a state
machine.

G_559_2_B RMM_RTL_
CODING_
GUIDELINES

Create an enumerated type to define the state vector of a state
machine.

G_559_3 RMM_RTL_
CODING_
GUIDELINES

In state machine, keep FSM logic and non-FSM logic apart.

G_559_4 RMM_RTL_
CODING_
GUIDELINES

Assign a default state to the state machine.

G_561_1 RMM_RTL_
CODING_
GUIDELINES

Drivers of output ports should be registered: %s

G_564_1 RMM_RTL_
CODING_
GUIDELINES

Avoid using asynchronous logic.

G_568_1 RMM_RTL_
CODING_
GUIDELINES

Avoid glue logic at top level.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

374 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

R_5210_1_A RMM_RTL_
CODING_
GUIDELINES

Ports must be declared in the following order: in out inout buffer
linkage.

R_5210_1_B RMM_RTL_
CODING_
GUIDELINES

Ports must be declared in the following order: input inout output.

R_5211_1 RMM_RTL_
CODING_
GUIDELINES

Use named association when instantiating design units.

R_5215_1 RMM_RTL_
CODING_
GUIDELINES

Every process must have a (meaningful) process label.

R_521_10 RMM_RTL_
CODING_
GUIDELINES

Always use descending range for multi-bit signals and ports.

R_522_1 RMM_RTL_
CODING_
GUIDELINES

Underscores are not allowed in top level port names.

R_522_2 RMM_RTL_
CODING_
GUIDELINES

Linkage mode is not allowed for top level port declarations.

R_522_3 RMM_RTL_
CODING_
GUIDELINES

Top level port must be of type std_logic(_vector), signed or
unsigned.

R_524_1_A RMM_RTL_
CODING_
GUIDELINES

Header comments are missing.

R_524_1_B RMM_RTL_
CODING_
GUIDELINES

Modification field missing from header comment.

R_524_1_C RMM_RTL_
CODING_
GUIDELINES

Description field missing from header comment.

R_524_1_D RMM_RTL_
CODING_
GUIDELINES

Date field missing from header comment.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 375

Leda User Guide Appendix C: Leda Prebuilt Configurations

R_524_1_E RMM_RTL_
CODING_
GUIDELINES

Author field missing from header comment.

R_524_1_F RMM_RTL_
CODING_
GUIDELINES

File name field missing from header comment.

R_525_1_B RMM_RTL_
CODING_
GUIDELINES

Function must have a header comment.

R_525_1_C RMM_RTL_
CODING_
GUIDELINES

Task must have a header comment.

R_525_1_D RMM_RTL_
CODING_
GUIDELINES

Process must have a header comment.

R_525_1_E RMM_RTL_
CODING_
GUIDELINES

Subprogram must have a header comment.

R_526_1 RMM_RTL_
CODING_
GUIDELINES

Use a separate line for each HDL statement.

R_529_1 RMM_RTL_
CODING_
GUIDELINES

VHDL or Verilog reserved words cannot be used as identifiers.

R_531_1 RMM_RTL_
CODING_
GUIDELINES

All types and subtypes should be based on IEEE standard types.

R_552_1 RMM_RTL_
CODING_
GUIDELINES

Latch inferred for <%item>.

R_554_1_A RMM_RTL_
CODING_
GUIDELINES

Redundant signal <%item> in sensitivity list.

R_554_1_B RMM_RTL_
CODING_
GUIDELINES

Missing signal <%item> in sensitivity list.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

376 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

R_555_1_A RMM_RTL_
CODING_
GUIDELINES

Use non-blocking assignments in sequential always blocks.

R_555_1_B RMM_RTL_
CODING_
GUIDELINES

Use blocking assignments in combinational always blocks.

SC_001 SCIROCCO_
CYCLE

Only access types of type LINE, from package textio, are
supported in cycle mode.

SC_002 SCIROCCO_
CYCLE

Generics of records type are not supported in cycle mode.

SC_003 SCIROCCO_
CYCLE

Enumeration values may not be used as for loop bounds in cycle
mode.

SC_004 SCIROCCO_
CYCLE

Enumeration values may not be used as for-generate loop bounds
in cycle mode.

SC_006 SCIROCCO_
CYCLE

Deferred constant declarations are not supported in cycle mode.

SC_009 SCIROCCO_
CYCLE

Incomplete type declarations are not supported in cycle mode.

SC_010 SCIROCCO_
CYCLE

Shared variable declarations are not supported in cycle mode.

SC_011 SCIROCCO_
CYCLE

Only the USE clause is allowed in the declarative part of
configuration in cycle mode.

SC_012 SCIROCCO_
CYCLE

Postponed processes are not supported in cycle mode.

SC_016 SCIROCCO_
CYCLE

Multiple waveform elements (fragments) not supported in a
signal assignment in cycle mode.

SC_018 SCIROCCO_
CYCLE

Signal declaration in a generate statement is not supported in
cycle mode.

SC_019 SCIROCCO_
CYCLE

Pulse rejection limit expression is not supported in cycle mode.

SC_020 SCIROCCO_
CYCLE

Extended identifiers are not supported in cycle mode.

SC_022 SCIROCCO_
CYCLE

Subelement association for record formals is not supported in
cycle mode.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 377

Leda User Guide Appendix C: Leda Prebuilt Configurations

SC_023 SCIROCCO_
CYCLE

Type TIME is the only supported physical type in cycle mode.

SC_026 SCIROCCO_
CYCLE

Record declaration inside the subprogram is not supported in
cycle mode.

SC_027 SCIROCCO_
CYCLE

Signal declaration in a package (global signal) is not supported
in cycle mode.

SC_028 SCIROCCO_
CYCLE

File declaration in a package is not supported in cycle mode.

SC_029 SCIROCCO_
CYCLE

Allocators are not supported in cycle mode.

SC_030 SCIROCCO_
CYCLE

‘X’ checking not allowed in 2-state cycle mode (allowed in
4-state cycle mode).

SC_031 SCIROCCO_
CYCLE

‘Z’ checking not allowed in 2-state cycle mode (allowed in
4-state cycle mode).

SC_032 SCIROCCO_
CYCLE

Guard conditions for blocks are not supported in cycle mode.

SC_100 SCIROCCO_
CYCLE

Bus signal kind is ignored in cycle mode.

SC_101 SCIROCCO_
CYCLE

Register signal kind is ignored in cycle mode.

SC_102 SCIROCCO_
CYCLE

In assignment using transport clause, delays are ignored in cycle
mode.

SC_103 SCIROCCO_
CYCLE

AFTER clause - delays are ignored in cycle mode.

SC_104 SCIROCCO_
CYCLE

DISCONNECT specification is ignored in cycle mode.

SC_105 SCIROCCO_
CYCLE

Statements in an entity are ignored in cycle mode.

SC_107 SCIROCCO_
CYCLE

Missing or redundant signals in the process sensitivity list.
Signal <%item> is missing or redundant.

SC_201 SCIROCCO_
CYCLE

Variable assignment outside pure sequential region - extra cycle
mode trigger.

SC_202 SCIROCCO_
CYCLE

Variable is read first on at least one flow of control - extra cycle
mode trigger.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

378 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SC_204 SCIROCCO_
CYCLE

Use of both rising edge and falling edge triggered logic will
yield extra cycle mode triggers which in turn will degrade
simulation performance.

SC_300 SCIROCCO_
CYCLE

Gated clocks create extra cycle mode triggers.

SC_301 SCIROCCO_
CYCLE

In any cycle mode partitioned block, the clock should be an input
to the block.

SC_302 SCIROCCO_
CYCLE

In any cycle mode partitioned block, the asynchronous reset/set/
load should be an input to the block; <%item> is not an input.

SC_303 SCIROCCO_
CYCLE

<%value> clocks have been detected in this cycle mode
partitioned block.

SC_304 SCIROCCO_
CYCLE

<%value> resets have been detected in this cycle mode
partitioned block.

SC_305 SCIROCCO_
CYCLE

Asynchronous feedback loops are not recommended in cycle
mode.

SC_306 SCIROCCO_
CYCLE

<%value> sets have been detected in this cycle mode partitioned
block.

SC_307 SCIROCCO_
CYCLE

<%value> loads have been detected in this cycle mode
partitioned block.

VCS_1 VCS Avoid asynchronous feedback loops.

VCS_10 VCS Do not implicit wire declaration

VCS_11 VCS Implicit wire declaration is not supported.

VCS_12 VCS Use only non-blocking assignments without delays in always
block.

VCS_14 VCS Only non-blocking assignments allowed in synchronous blocks.

VCS_15 VCS Only blocking assignments allowed in combinational blocks.

VCS_17 VCS Regs must be assigned by one block only. Multiple drivers
detected for <%item>.

VCS_2_2 VCS Avoid using time declarations.

VCS_2_3 VCS Avoid using event triggers.

VCS_2_4 VCS Avoid using trireg.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 379

Leda User Guide Appendix C: Leda Prebuilt Configurations

VCS_2_5 VCS Avoid using ranges/arrays for integers.

VCS_3 VCS Avoid using n_output_gate.

VCS_31 VCS Static data types are not supported in $root.

VCS_33 VCS unique/priority not supported in conditional statement.

VCS_34 VCS unique/priority not supported in case/casex/casez statement.

VCS_3_1 VCS Avoid using n_input_gate.

VCS_3_2 VCS Avoid using enable_gate.

VCS_3_3 VCS Avoid using mos_switch.

VCS_3_4 VCS Avoid using pass_switch.

VCS_3_5 VCS Avoid using pass enable switch.

VCS_3_6 VCS Avoid using cmos_switch.

VCS_3_7 VCS Avoid using pull_gate.

VCS_4 VCS Avoid declaring strengths with continuous assignments.

VCS_42 VCS Casting is not supported.

VCS_45 VCS Generic interface ports not supported.

VCS_5 VCS Missing or redundant signals in the sensitivity list of a
combinational block. Signal <%item> is missing or redundant.

VCS_53 VCS Import/export of tasks and functions is not supported.

VCS_54 VCS Process statement is not supported.

VCS_55 VCS Nested module/interface declaration is not supported.

VCS_7 VCS Avoid using case statement in sequential blocks.

VCS_7_1 VCS Avoid using repeat in always blocks.

VCS_7_10 VCS Avoid task enable in always blocks.

VCS_7_11 VCS Avoid disable statement in always construct.

VCS_7_3 VCS Avoid using wait statement in always blocks.

VCS_7_4 VCS Avoid using fork-join in always block.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

380 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

VCS_7_5 VCS Avoid assign statements in always blocks.

VCS_7_6 VCS Avoid deassign in always blocks.

VCS_7_7 VCS Avoid force in always blocks.

VCS_7_9 VCS Avoid release in always blocks.

VCS_8 VCS Avoid procedural assignments using a variable to bit-select on
LHS.

VCS_9 VCS Missing or redundant signals in the sensitivity list of a sequential
block. Signal <%item> is missing or redundant.

E25 VERILINT Bits are backwards.

E267 VERILINT Range index out of bound.

E268 VERILINT Index out of bound.

E304 VERILINT Drive strength cannot be given to a net.

E368 VERILINT Variable <%item> previously declared as a vector.

E54 VERILINT Instance name required for module.

E66 VERILINT Not a constant expression.

W110 VERILINT Incompatible width.

W112 VERILINT Nested event control construct.

W122 VERILINT Variable <%item> is not in the sensitivity list.

W126 VERILINT Non integer delay.

W127 VERILINT Delay has X or Z.

W129 VERILINT Delay is not a constant.

W131 VERILINT Potential loss of precision in multiplication.

W154 VERILINT Implicit wire declaration.

W159 VERILINT Constant condition expression.

W161 VERILINT Constant expression in conditional select.

W163 VERILINT Truncation of bits in constant. Most significant bits are lost.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 381

Leda User Guide Appendix C: Leda Prebuilt Configurations

W182 VERILINT Illegal statement for synthesis.

W187 VERILINT Default clause is not the last clause in case statement.

W188 VERILINT Destination variable is input.

W192 VERILINT Empty block.

W20 VERILINT Assign statement may not be synthesizable.

W21 VERILINT Deassign statement may not be synthesizable.

W215 VERILINT Bit select for integer or time variable.

W216 VERILINT Range select for integer or time variable.

W224 VERILINT Multi-bit expression when one bit expression is expected.

W225 VERILINT Case item expression is not constant.

W226 VERILINT Case-select expression is constant.

W228 VERILINT While condition expression is constant.

W244 VERILINT Shift by non-constant.

W250 VERILINT Disable statement is not synthesizable.

W257 VERILINT Delays ignored by synthesis tools.

W263 VERILINT Case expression out of range.

W280 VERILINT Delay in non blocking assignment.

W287 VERILINT Unconnected port <%formal>.

W289 VERILINT Multiply connected port.

W294 VERILINT Unsynthesizable real variable <%item>.

W299 VERILINT Blocking repeat assignment.

W300 VERILINT Non-blocking repeat assignment.

W306 VERILINT Converting integer to real.

W307 VERILINT Converting unsigned to real.

W308 VERILINT Converting real to integer.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

382 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

W311 VERILINT Converting real to unsigned.

W312 VERILINT Converting real to single bit (logical).

W313 VERILINT Converting integer to single bit (logical).

W314 VERILINT Converting vector (unsigned) to single bit (logical).

W322 VERILINT Multiple event control statement.

W332 VERILINT Not all possible cases covered by default case exists.

W335 VERILINT Non blocking delay assignment in combinational always block.

W336 VERILINT Blocking assignment. In sequential always blocks consider using
non-blocking assignment.

W337 VERILINT Real comparison in case item.

W339 VERILINT Non synthesizable operator.

W341 VERILINT Extension of zero bits in a constant.

W342 VERILINT Extension of X bits in a constant.

W343 VERILINT Extension of Z bits in a constant.

W359 VERILINT For - condition expression is constant.

W372 VERILINT Undefined PLI task.

W373 VERILINT Undefined PLI function.

W389 VERILINT <%value> clocks in the module.

W390 VERILINT Multiple resets in the module.

W392 VERILINT Wrong reset polarity.

W394 VERILINT Multiple clocks in the always block.

W396 VERILINT A flip-flop without reset.

W397 VERILINT Destination bit is input.

W401 VERILINT Clock <%item> is not an input to the module.

W402 VERILINT Reset <%item> is not an input to the module.

W403 VERILINT Clock is used as data.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 383

Leda User Guide Appendix C: Leda Prebuilt Configurations

W410 VERILINT Latch inferred for <%item>.

W414 VERILINT Non blocking assignment in combinational block.

W415 VERILINT Multiple drivers to net <%item> detected.

W416 VERILINT Instance connection not by name.

W421 VERILINT Non event-control statement (@) in always block.

W424 VERILINT Functions sets a global variable <%item>.

W425 VERILINT Functions uses a global variable <%item>.

W426 VERILINT Tasks sets a global variable <%item>.

W427 VERILINT Tasks uses a global variable <%item>.

W43 VERILINT Wait statement may not be synthesizable.

W430 VERILINT Initial statement may not be synthesizable.

W434 VERILINT Top level module is a primitive.

W438 VERILINT Tristate is not in a top level module.

W443 VERILINT X in based number constant.

W444 VERILINT High Z in based number constant.

W445 VERILINT Output or inout <%item> tied to supply.

W446 VERILINT Reading from an output port <%item>.

W450 VERILINT Multi-bit expression (e.g a[2:0] used as clock.

W455 VERILINT Not all cases are covered in full case.

W456 VERILINT Variable <%item> is in the sensitivity list but not used in the
block.

W459 VERILINT Constant is extended to the implied width of 32 bits.

W467 VERILINT ‘?’ in based number constant.

W468 VERILINT Index variable is too short.

W473 VERILINT A port <%item> without range is re-declared with a range.

W478 VERILINT Bad loop initialization statement.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

384 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

W479 VERILINT Bad loop step statement.

W483 VERILINT Assigned to self. This could imply a latch in synthesis.

W484 VERILINT Possible loss of carry/borrow in addition/subtraction.

W485 VERILINT Non-negative (reg) is compared to 0.

W488 VERILINT Bus variable in the sensitivity list but not all its bits are used in
the block.

W489 VERILINT Last function statement does not assign to the function.

W490 VERILINT Tristate control expression is not a variable name.

W491 VERILINT Extension of ? bits in a constant.

W496 VERILINT Comparison to 3 state are treated as false.

W499 VERILINT Last function statement does not assign to all the bits of the
function.

W502 VERILINT A variable in the sensitivity list is modified inside the block.

W504 VERILINT Integer <%item> is used in port expression.

W505 VERILINT Mixed assignment styles (delay and non-blocking).

W507 VERILINT Too many strengths for a pullup/pulldown gate (only one is
needed).

W509 VERILINT Defparam may not be synthesizable.

W521 VERILINT Not all the bits of the variable are in the sensitivity list.

W526 VERILINT Nested ifs. Consider using case or casex statement instead.

W527 VERILINT ‘if’ without an ‘else’ when one may be expected (dangling ‘else’
for a nested ‘if’). Make sure the nesting is correct.

W529 VERILINT ‘ifdef may not be supported by some synthesis tools.

W531 VERILINT Truncating leading zeros (or x’s or z’s).

W541 VERILINT Tristate is inferred.

W547 VERILINT Redundant case expression.

W548 VERILINT Synchronous flip-flop is inferred.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 385

Leda User Guide Appendix C: Leda Prebuilt Configurations

W549 VERILINT Asynchronous flip-flop is inferred.

W550 VERILINT Mux is inferred.

W551 VERILINT full_case has a default clause.

W554 VERILINT Unconventional assigning to a function. Consider using regular
assignment statement (‘=’).

W555 VERILINT Unconventional deassigning to a function.

W556 VERILINT Complex condition expression. Could be as a result of wrong
interpretation of operator precedence.

W557 VERILINT Illegal use of range for scalar parameter.

W558 VERILINT Illegal use of bit select for scalar parameter.

W561 VERILINT Based number with 0 width is extended to the implied width of
32 bits.

W562 VERILINT Variable is assigned in both blocking and non-blocking
assignments.

W563 VERILINT Reduction of a single bit expression is redundant.

W565 VERILINT Inferred a shift register.

W570 VERILINT Inferred a counter.

W575 VERILINT Logical NOT_OP operating on a vector.

W576 VERILINT Multibit operand in a logical expression.

W592 VERILINT Constant (parameter or specparam) is used in event control
expression.

W594 VERILINT Not all cases are covered in full case, but default case exists.

W599 VERILINT This construct is not supported by Synopsys.

W601 VERILINT The loop index is being modified.

W631 VERILINT Assigned to self. This is harmless, but can reduce simulation
speed.

W639 VERILINT For synthesis, operands of a division or modulo operation need
to be constants.

W67 VERILINT Not a constant expression.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

386 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

W69 VERILINT Case statement without default clause but all the cases are
covered.

W71 VERILINT Case statement without default clause and not all cases are
covered.

Table 39: Leda-classic Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 387

Leda User Guide Appendix C: Leda Prebuilt Configurations

CDC Prebuilt Configuration
The following rules are from the CDC prebuilt configuration. CDC rules check clock
domain crossings. This configuration contains about 32 rules drawn from the DESIGN
policy. To load this rule configuration, from the Rule Wizard, choose Config > Load
configuration, and use the pull-down menu to select CDC.

Table 40: CDC Prebuilt Configuration

Rule Label Policy Message

NTL_CLK05 DESIGN Data must be registered by 2 or more flip-flops when crossing
clock domain.

NTL_CLK23 DESIGN Multiple asynchronous clock domain signals converging on
<gate name>.

NTL_CLK24 DESIGN Multibit control signal crossing clock domain should be Gray
coded.

NTL_CLK25 DESIGN Control signal crossing clock domain.

NTL_CLK26 DESIGN Control signal crossing clock domain with data transfer.

NTL_CLK27 DESIGN Control signal crossing clock domain without data transfer.

NTL_CLK29 DESIGN Primary input feeds multiple clock domain.

NTL_CLK30 DESIGN Reset is used in multiple clock domain.

NTL_CLK31 DESIGN Clock signal is connected to the select pin of the MUX.

NTL_CLK33 DESIGN Detect the combinational circuit other than selector
(multiplexor) which merges the multiple clocks.

NTL_CLK34 DESIGN Do not use meta-stable flip-flop

NTL_PAR13 DESIGN Separate the design according to clock domains.

NTL_PAR17 DESIGN Asynchronous parts should be placed in separate entities.

NTL_STR14 DESIGN Check the circuits labeled _meta are really proper metastable
circuits.

NTL_STR15 DESIGN Give unique name to synchronizers so that they can be
identified.

NTL_STR86 DESIGN No Fanout within synchronizer.

388 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SDC-postlayout Prebuilt Configuration
• The following rules are from the SDC-postlayout prebuilt configuration. This

configuration contains about 36 rules drawn from the CONSTRAINTS policy. To
load this rule configuration, from the Rule Wizard, choose Config > Load
configuration, and use the pull-down menu to select SDC-postlayout. A duplicate
of this configuration is also available as sdc-quality-postlayout prebuilt
configuration. To load this rule configuration, from the Rule Wizard, choose Config
> Load configuration, and use the pull-down menu to select
SDC-quality-postlayout.

Table 41: SDC-postlayout Prebuilt Configuration

Rule Label Policy Message

SDC_CLK02 CONSTRAINTS Unused clock constraint.

SDC_CLK03 CONSTRAINTS Generated clock is not in the transitive fanout of its master
clock.

SDC_CLK04 CONSTRAINTS Generated clock master is not used as clock in design.

SDC_CLK08 CONSTRAINTS Source pin of generated clock is not a port of design.

SDC_CLK09 CONSTRAINTS Source pin of generated clock is in the fanout of the source pin
of another clock, but is not generated by the later.

SDC_CLK10 CONSTRAINTS Clock has no set_propagated_clock constraint in postlayout.

SDC_CLK14 CONSTRAINTS Incomplete clock definition: both -waveform and -period are
missing.

SDC_CLK15 CONSTRAINTS Incomplete generated clock definition: one of -divide_by,
-multiply_by, -invert, -edge_shift or edges must be present.

SDC_CLK20 CONSTRAINTS Same clock has multiple definitions.

SDC_CTR06 CONSTRAINTS Undefined clock transition for real clock.

SDC_CTR08 CONSTRAINTS Do not use set_clock_transition in postlayout; use
set_input_transtiton instead.

SDC_CTR10 CONSTRAINTS set_driving_cell on clock ports is not recommended in
postlayout.

SDC_CTR12 CONSTRAINTS Incomplete set_input_transition option.

SDC_FLP01_A CONSTRAINTS False path reference points are not connected.

SDC_FLP01_B CONSTRAINTS False path reference points do not exist.

SDC_IDL01 CONSTRAINTS Unconstrained input.

June 2006 Synopsys, Inc. 389

Leda User Guide Appendix C: Leda Prebuilt Configurations

SDC_IDL04 CONSTRAINTS Incomplete set_input_delay options.

SDC_IDL05 CONSTRAINTS Inconsistent set_input_delay value versus clock period.

SDC_IDL06 CONSTRAINTS Input constrained versus wrong (real) clock.

SDC_ITR01 CONSTRAINTS Undefined set_input_transition or set_driving_cell.

SDC_ITR02 CONSTRAINTS Incomplete input_transition options.

SDC_ITR03 CONSTRAINTS Inconsistent set_input_transition option values -min > max.

SDC_ITR07 CONSTRAINTS Unusual input transition options.

SDC_ITR09 CONSTRAINTS Negative set_input_transition value.

SDC_MCP01_
A

CONSTRAINTS Multicycle path reference points are not connected.

SDC_MCP01_
B

CONSTRAINTS Multicycle path reference points do not exists.

SDC_NAM01 CONSTRAINTS Do not name clocks same as port or pin name.

SDC_ODL01 CONSTRAINTS Unconstrained output.

SDC_ODL04 CONSTRAINTS Incomplete set_output_delay options.

SDC_ODL05 CONSTRAINTS Inconsistent output delay versus clock period.

SDC_ODL06 CONSTRAINTS Output constrained versus wrong (real) clock.

SDC_ODL12 CONSTRAINTS Unusual output delay value.

SDC_OLD01 CONSTRAINTS Undefined or zero load on output or inout port.

SDC_UNC01 CONSTRAINTS Undefined clock uncertainty or zero clock uncertainty (real and
generated clocks).

SDC_UNC02 CONSTRAINTS Clock uncertainty is set on an object that is not a clock (real
and generated clocks).

SDC_UNC05 CONSTRAINTS Negative clock uncertainty value.

Table 41: SDC-postlayout Prebuilt Configuration (Continued)

Rule Label Policy Message

390 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SDC-prelayout Prebuilt Configuration
The following rules are from the SDC-prelayout prebuilt configuration. This
configuration contains about 46 rules drawn from the CONSTRAINTS policy. To load
this rule configuration, from the Rule Wizard, choose Config > Load configuration,
and use the pull-down menu to select SDC-prelayout. A duplicate of this configuration
is also available as sdc-quality-prelayout prebuilt configuration. To load this rule
configuration, from the Rule Wizard, choose Config > Load configuration, and use the
pull-down menu to select SDC-quality-prelayout.

Table 42: SDC-prelayout Prebuilt Configuration

Rule Label Policy Message

SDC_CLK01 CONSTRAINTS Unconstrained clock. No create_clock or
create_generated_clock found.

SDC_CLK02 CONSTRAINTS Unused clock constraint.

SDC_CLK03 CONSTRAINTS Generated clock is not in the transitive fanout of its master
clock.

SDC_CLK04 CONSTRAINTS Generated clock master is not used as clock in design.

SDC_CLK08 CONSTRAINTS Source pin of generated clock is not a port of design.

SDC_CLK09 CONSTRAINTS Source pin of generated clock is in the fanout of the source pin
of another clock, but is not generated by the later.

SDC_CLK11 CONSTRAINTS set_propagated_clock defined on clock in prelayout.

SDC_CLK14 CONSTRAINTS Incomplete clock definition: both -waveform and -period are
missing.

SDC_CLK15 CONSTRAINTS Incomplete generated clock definition: one of -divide_by,
-multiply_by, -invert, -edge_shift or edges must be present.

SDC_CLK20 CONSTRAINTS Same clock line has multiple definitions.

SDC_CTR01 CONSTRAINTS Missing set_clock_transition constraint for clock.

SDC_CTR02 CONSTRAINTS set_clock_transition is set on an object that is not a clock.

SDC_CTR09 CONSTRAINTS set_input_transition and set_driving_cell on clock ports are not
recommended in prelayout.

SDC_CTR11 CONSTRAINTS Incomplete set_clock_transition options.

SDC_FLP01_A CONSTRAINTS False path reference points are not connected.

SDC_FLP01_B CONSTRAINTS False path reference points do not exist.

June 2006 Synopsys, Inc. 391

Leda User Guide Appendix C: Leda Prebuilt Configurations

SDC_IDL01 CONSTRAINTS Unconstrained input.

SDC_IDL04 CONSTRAINTS Incomplete set_input_delay options.

SDC_IDL05 CONSTRAINTS Inconsistent set_input_delay value versus clock period.

SDC_IDL06 CONSTRAINTS Input constrained versus wrong (real) clock.

SDC_ITR01 CONSTRAINTS Undefined set_input_transition or set_driving_cell.

SDC_ITR02 CONSTRAINTS Incomplete input_transition options.

SDC_ITR03 CONSTRAINTS Inconsistent set_input_transition option values -min > max.

SDC_ITR07 CONSTRAINTS Unusual input transition options.

SDC_ITR09 CONSTRAINTS Negative set_input_transition value.

SDC_LAT01 CONSTRAINTS Undefined clock latency or zero clock latency for real clocks.

SDC_LAT02 CONSTRAINTS Clock latency is set on an object that is not a clock.

SDC_LAT03 CONSTRAINTS Source latency for a generated clock is less than or equal to the
source clock latency.

SDC_LAT06 CONSTRAINTS Undefined source latency or zero source latency for generated
clock.

SDC_LAT07_A CONSTRAINTS Incomplete set_clock_latency options.

SDC_LAT07_B CONSTRAINTS Incomplete set_clock_latency options.

SDC_LAT08_A CONSTRAINTS Inconsistent clock latency option values -min > max.

SDC_LAT08_B CONSTRAINTS Inconsistent clock latency option values -early > late.

SDC_LAT09 CONSTRAINTS Negative clock latency value.

SDC_MCP01_
A

CONSTRAINTS Multicycle path reference points are not connected.

SDC_MCP01_
B

CONSTRAINTS Multicycle path reference points do not exist.

SDC_NAM01 CONSTRAINTS Do not name clocks same as port or pin name.

SDC_ODL01 CONSTRAINTS Unconstrained output.

SDC_ODL04 CONSTRAINTS Incomplete set_output_delay options.

Table 42: SDC-prelayout Prebuilt Configuration (Continued)

Rule Label Policy Message

392 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SDC_ODL05 CONSTRAINTS Inconsistent output delay versus clock period.

SDC_ODL06 CONSTRAINTS Output constrained versus wrong (real) clock.

SDC_ODL12 CONSTRAINTS Unusual output delay value.

SDC_OLD01 CONSTRAINTS Undefined or zero load on output or inout port.

SDC_UNC01 CONSTRAINTS Undefined clock uncertainty or zero clock uncertainty (real and
generated clocks).

SDC_UNC02 CONSTRAINTS Clock uncertainty is set on an object that is not a clock (real
and generated clocks).

SDC_UNC05 CONSTRAINTS Negative clock uncertainty value.

Table 42: SDC-prelayout Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 393

Leda User Guide Appendix C: Leda Prebuilt Configurations

SDC-RTL Prebuilt Configuration
The following rules are from the SDC-RTL prebuilt configuration. This configuration
contains about 46 rules drawn from the CONSTRAINTS policy. To load this rule
configuration, from the Rule Wizard, choose Config > Load configuration, and use the
pull-down menu to select SDC-RTL. A duplicate of this configuration is also available
as sdc-quality-rtl prebuilt configuration. To load this rule configuration, from the Rule
Wizard, choose Config > Load configuration, and use the pull-down menu to select
sdc-quality-rtl

Table 43: SDC-RTL Prebuilt Configuration

Rule Label Policy Message

SDC_CLK01 CONSTRAINTS Unconstrained clock. No create_clock or
create_generated_clock found.

SDC_CLK02 CONSTRAINTS Unused clock constraint.

SDC_CLK03 CONSTRAINTS Generated clock is not in the transitive fanout of its master
clock.

SDC_CLK04 CONSTRAINTS Generated clock master is not used as clock in design.

SDC_CLK08 CONSTRAINTS Source pin of generated clock is not a port of design.

SDC_CLK09 CONSTRAINTS Source pin of generated clock is in the fanout of the source
pin of another clock, but is not generated by the later.

SDC_CLK11 CONSTRAINTS set_propagated_clock defined on clock in prelayout.

SDC_CLK14 CONSTRAINTS Incomplete clock definition: both -waveform and -period
are missing.

SDC_CLK15 CONSTRAINTS Incomplete generated clock definition: one of -divide_by,
-multiply_by, -invert, -edge_shift or edges must be present.

SDC_CLK20 CONSTRAINTS Same clock line has multiple definitions.

SDC_CTR01 CONSTRAINTS Missing set_clock_transition constraint for clock.

SDC_CTR02 CONSTRAINTS set_clock_transition is set on an object that is not a clock.

SDC_CTR09 CONSTRAINTS set_input_transition and set_driving_cell on clock ports are
not recommended in prelayout.

SDC_CTR11 CONSTRAINTS Incomplete set_clock_transition options.

SDC_FLP01_A CONSTRAINTS False path reference points are not connected.

SDC_FLP01_B CONSTRAINTS False path reference points do not exist.

394 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SDC_IDL01 CONSTRAINTS Unconstrained input.

SDC_IDL04 CONSTRAINTS Incomplete set_input_delay options.

SDC_IDL05 CONSTRAINTS Inconsistent set_input_delay value versus clock period.

SDC_IDL06 CONSTRAINTS Input constrained versus wrong (real) clock.

SDC_ITR01 CONSTRAINTS Undefined set_input_transition or set_driving_cell.

SDC_ITR02 CONSTRAINTS Incomplete input_transition options.

SDC_ITR03 CONSTRAINTS Inconsistent set_input_transition option values -min >
max.

SDC_ITR07 CONSTRAINTS Unusual input transition options.

SDC_ITR09 CONSTRAINTS Negative set_input_transition value.

SDC_LAT01 CONSTRAINTS Undefined clock latency or zero clock latency for real
clocks.

SDC_LAT02 CONSTRAINTS Clock latency is set on an object that is not a clock.

SDC_LAT03 CONSTRAINTS Source latency for a generated clock is less than or equal to
the source clock latency.

SDC_LAT06 CONSTRAINTS Undefined source latency or zero source latency for
generated clock.

SDC_LAT07_A CONSTRAINTS Incomplete set_clock_latency options.

SDC_LAT07_B CONSTRAINTS Incomplete set_clock_latency options.

SDC_LAT08_A CONSTRAINTS Inconsistent clock latency option values -min > max.

SDC_LAT08_B CONSTRAINTS Inconsistent clock latency option values -early > late.

SDC_LAT09 CONSTRAINTS Negative clock latency value.

SDC_MCP01_A CONSTRAINTS Multicycle path reference points are not connected.

SDC_MCP01_B CONSTRAINTS Multicycle path reference points do not exist.

SDC_NAM01 CONSTRAINTS Do not name clocks same as port or pin name.

SDC_ODL01 CONSTRAINTS Unconstrained output.

SDC_ODL04 CONSTRAINTS Incomplete set_output_delay options.

Table 43: SDC-RTL Prebuilt Configuration (Continued)

Rule Label Policy Message

June 2006 Synopsys, Inc. 395

Leda User Guide Appendix C: Leda Prebuilt Configurations

SDC_ODL05 CONSTRAINTS Inconsistent output delay versus clock period.

SDC_ODL06 CONSTRAINTS Output constrained versus wrong (real) clock.

SDC_ODL12 CONSTRAINTS Unusual output delay value.

SDC_OLD01 CONSTRAINTS Undefined or zero load on output or inout port.

SDC_UNC01 CONSTRAINTS Undefined clock uncertainty or zero clock uncertainty (real
and generated clocks).

SDC_UNC02 CONSTRAINTS Clock uncertainty is set on an object that is not a clock
(real and generated clocks).

SDC_UNC05 CONSTRAINTS Negative clock uncertainty value.

Table 43: SDC-RTL Prebuilt Configuration (Continued)

Rule Label Policy Message

396 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

SDC-top-versus-block Prebuilt Configuration
The following rules are from the SDC-top-versus-block prebuilt configuration. This
configuration contains about five rules drawn from the CONSTRAINTS policy. To load
this rule configuration, from the Rule Wizard, choose Config > Load configuration,
and use the pull-down menu to select SDC-top-versus-block.

Table 44: SDC-top-versus-block Prebuilt Configuration

Rule Label Policy Message

SDC_TOP01 CONSTRAINTS Block level clock constraint is inconsistent with top level
clock constraint.

SDC_TOP02 CONSTRAINTS Block level I/O delay constraint is inconsistent with top
level I/O delay constraint.

SDC_TOP03 CONSTRAINTS Block level false path constraint is inconsistent with top
level false path constraint.

SDC_TOP04 CONSTRAINTS Block level multicycle path constraint is inconsistent with
top level multicycle path constraint.

SDC_TOP20 CONSTRAINTS Block level max/min delay constraint is inconsistent with
top level max/min delay constraint.

June 2006 Synopsys, Inc. 397

Leda User Guide Appendix C: Leda Prebuilt Configurations

SDC-equivalency Prebuilt Configuration
The following rules are from the SDC-equivalency prebuilt configuration. This
configuration contains about 14 rules drawn from the CONSTRAINTS policy. To load
this rule configuration, from the Rule Wizard, choose Config > Load configuration,
and use the pull-down menu to select SDC-equivalency.

Table 45: SDC-equivalency Prebuilt Configuration

Rule Label Policy Message

SDC_EQCLK01 CONSTRAINTS Equivalency file clock constraint is inconsistent with
reference file clock constraint: equivalency clock is %s

SDC_EQCLK02 CONSTRAINTS Reference file clock constraint is inconsistent with
equivalency file clock constraint: reference clock is %s

SDC_EQIDL01 CONSTRAINTS Equivalency file input delay constraint is inconsistent with
reference file delay constraint: input port is %s

SDC_EQIDL02 CONSTRAINTS Reference file input delay constraint is inconsistent with
equivalency file delay constraint: input port is %s

SDC_EQODL01 CONSTRAINTS Equivalency file output delay constraint is inconsistent
with reference file delay constraint: output port is %s

SDC_EQODL02 CONSTRAINTS Reference file output delay constraint is inconsistent with
equivalency file delay constraint: output port is %s

SDC_EQFLP01 CONSTRAINTS Equivalency file false path constraint is inconsistent with
reference file false path constraint.

SDC_EQFLP02 CONSTRAINTS Reference file false path constraint is inconsistent with
equivalency file false path constraint.

SDC_EQMCP01 CONSTRAINTS Equivalency file multicycle path constraint is inconsistent
with reference file multicycle path constraint.

SDC_EQMCP02 CONSTRAINTS Reference file multicycle path constraint is inconsistent
with equivalency file multicycle path constraint.

SDC_EQCMB01 CONSTRAINTS Equivalency file max-delay path constraint is inconsistent
with reference file max-delay path constraint.

SDC_EQCMB02 CONSTRAINTS Equivalency file min-delay path constraint is inconsistent
with reference file min-delay path constraint.

SDC_EQCMB03 CONSTRAINTS Reference file max-delay path constraint is inconsistent
with equivalency file max-delay path constraint.

SDC_EQCMB04 CONSTRAINTS Reference file min-delay path constraint is inconsistent
with equivalency file min-delay path constraint.

398 Synopsys, Inc. June 2006

Appendix C: Leda Prebuilt Configurations Leda User Guide

June 2006 Synopsys, Inc. 399

Leda User Guide Appendix D: Leda Duplicated Rules

D
Leda Duplicated Rules

Introduction
Leda contains a list of 226 rules that appears in several different policies. These rules are
called Redundant/Duplicated rules. You can disable the redundant rules from the Rule
Wizard to avoid getting duplicated error messages.

Disabling Redundant Rules
The Topics tab on the left side of Rule Wizard gives you an easy way to review all of the
rules in the different policies related to a given topic. For example, if you click on the
(+) icon next to the Clocks topic on the left side of the display, the tree expands to show
a list of rules associated with clocks. One such rule is to avoid the use of both positive-
and negative-edge triggered flip-flops in the same design. Because this is a good
common sense design, rule, it appears in several different policies. When you click on
the (+) icon just to the left of the description for this rule, the display expands to show
the different policies where this rule is available, including DFT, RMM, and STARC.

Let’s say that you want a rule to be enabled for checking, but you don’t want five
different error messages to appear just because the rule is duplicated in five different
policies. To narrow your error report display, you can use the Topics tab to view
redundant rules. Click on the rule you want to disable and deselect it for checking using
the check box on the right hand side of the Rule Wizard. Do this for all but one of the
redundant rules, leaving just one relevant rule enabled for checking. To disable all
redundant rules at once, first run the Checker, right click on the rule in the Error Viewer,
and select “Disable Redundant Rules” from the pop-up menu.

400 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Duplicated Rule List
The duplicated rules are listed with the description and a table containing information
about the policy of the respective rules.

Note
These information of the Duplicated rules include for both languages VHDL
and Verilog. Please check for the selected language, when you select one of
them from this duplicated rule list.

For example, rules B_3608, VER_2_11_1_4, and VHD_2_11_1_4 all check for the
same violation “The number of states in a state machine should be less than 40”. Here
rule B_3608 supports both VHDL and Verilog but, VER_2_11_1_4 supports only
Verilog, and VHD_2_11_1_4 supports only VHDL.

Table 46: Duplicated Rule List

General Description Rule Label Policy

Port default values are
ignored

SYN1_1_2 IEEE_RTL_SYNTH_
SUBSET

VHD_2_1_3_4 VHD_STARC_DSG

Only generics of type
Integer for synthesis

DCVHDL_2024 DC

SYN1_1_3 IEEE_RTL_SYNTH_
SUBSET

VHD_3_2_4_1 VHD_STARC_DSG

Real data types is not
synthesizable.

DCVHDL_2108 DC

SYN2_2_4 IEEE_RTL_SYNTH_
SUBSET

Signal declaration in a
package (global signal) is
not supported in cycle mode.

SC_027 SCIROCCO_CYCLE

SYN2_5_2_F IEEE_RTL_SYNTH_
SUBSET

File declarations are illegal
in package declarations.

SC_028 SCIROCCO_CYCLE

SYN2_5_2_A IEEE_RTL_SYNTH_
SUBSET

June 2006 Synopsys, Inc. 401

Leda User Guide Appendix D: Leda Duplicated Rules

Physical types are not
supported for synthesis.

DCVHDL_2095 DC

SYN3_1_2 IEEE_RTL_SYNTH_
SUBSET

Multi-dimensional arrays
are not supported for
synthesis.

DCVHDL_2140 DC

SYN3_2_1_A IEEE_RTL_SYNTH_
SUBSET

Access types are not
supported for synthesis.

DCVHDL_2093 DC

SYN3_3_1 IEEE_RTL_SYNTH_
SUBSET

File type definitions are
illegal

VHD_2_1_10_9 VHD_STARC_DSG

DCVHDL_2094 DC

SYN3_4_1 IEEE_RTL_SYNTH_
SUBSET

Incomplete type declarations
are ignored.

DCVHDL_2096 DC

SC_009 SCIROCCO_CYCLE

SYN4_1_1_A IEEE_RTL_SYNTH_
SUBSET

Deferred constants are not
supported for synthesis.

DCVHDL_2155 DC

SC_006 SCIROCCO_CYCLE

SYN4_3_1_1_1 IEEE_RTL_SYNTH_
SUBSET

Initial values for signals are
not supported for synthesis.

DCVHDL_2022 DC

SYN4_3_1_2_1 IEEE_RTL_SYNTH_
SUBSET

Bus signal kind is ignored. SC_100 SCIROCCO_CYCLE

SYN4_3_1_2_2_A IEEE_RTL_SYNTH_
SUBSET

Register signal kind is
ignored.

SC_101 SCIROCCO_CYCLE

SYN4_3_1_2_2_B IEEE_RTL_SYNTH_
SUBSET

Table 46: Duplicated Rule List

General Description Rule Label Policy

402 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Initial values for variable
declarations are ignored.

DCVHDL_228 DC

SYN4_3_1_3_1 IEEE_RTL_SYNTH_
SUBSET

Shared variable declarations
are illegal.

SC_010 SCIROCCO_CYCLE

SYN4_3_1_3_2 IEEE_RTL_SYNTH_
SUBSET

VHD_2_1_10_3 VHD_STARC_DSG

File declarations are not
supported for synthesis.

DCVHDL_2042 DC

SYN4_3_1_4_1 IEEE_RTL_SYNTH_
SUBSET

Alias declarations are
ignored.

DCVHDL_2041 DC

SYN4_3_3_1 IEEE_RTL_SYNTH_
SUBSET

VHD_2_1_10_10 VHD_STARC_DSG

Configuration specifications
are not supported for
synthesis.

DCVHDL_2091 DC

SYN5_2_1 IEEE_RTL_SYNTH_
SUBSET

Disconnect specification is
ignored.

DCVHDL_2043 DC

SC_104 SCIROCCO_CYCLE

SYN5_3_1 IEEE_RTL_SYNTH_
SUBSET

VHD_2_1_10_12 VHD_STARC_DSG

Standard shift operations not
allowed.

SYN7_2_2 IEEE_RTL_SYNTH_
SUBSET

VHD_2_1_4_3 VHD_STARC_DSG

Record aggregates are
illegal.

DCVHDL_2111 DC

SYN7_3_2_1_1 IEEE_RTL_SYNTH_
SUBSET

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 403

Leda User Guide Appendix D: Leda Duplicated Rules

Timeout clauses are ignored
in wait statements.

DCVHDL_2050 DC

SYN8_1_4 IEEE_RTL_SYNTH_
SUBSET

Multiple waveform elements
are not supported.

SC_016 SCIROCCO_CYCLE

SYN8_4_1 IEEE_RTL_SYNTH_
SUBSET

Delays in signal assignment
are ignored by synthesis
tool.

B_2008 LEDA

SYN8_4_1_2 IEEE_RTL_SYNTH_
SUBSET

Keyword “reject” is not
supported.

SC_019 SCIROCCO_CYCLE

SYN8_4_4 IEEE_RTL_SYNTH_
SUBSET

while loops are not
supported.

DCVHDL_165 DC

SYN8_9_3 IEEE_RTL_SYNTH_
SUBSET

VHD_2_1_10_4 VHD_STARC_DSG

Guard expressions not
allowed in block statements.

DCVHDL_2045 DC

SC_032 SCIROCCO_CYCLE

SYN9_1_1 IEEE_RTL_SYNTH_
SUBSET

Variables must be initialized
before being used (to
prevent latch inference).

B_2011 LEDA

DCHDL_177 DC

FM_2_3 FORMALITY

SC_202 SCIROCCO_CYCLE

SYN9_2_3 IEEE_RTL_SYNTH_
SUBSET

Entity names are not
supported in component
instantiation statements.

SYN9_6_1 IEEE_RTL_SYNTH_
SUBSET

VHD_3_2_3_3 VHD_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

404 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Configuration names are not
supported in component
instantiation statements.

DCVHDL_2131 DC

SYN9_6_2 IEEE_RTL_SYNTH_
SUBSET

Block declarative part in
generate statement is not
supported.

DCVHDL_2284 DC

SYN9_7_1 IEEE_RTL_SYNTH_
SUBSET

Do not assign to a global
variable in a function.

CS_7C_R_B DESIGNWARE

SYN10_1 IEEE_RTL_SYNTH_
SUBSET

VER_2_1_3_5 VER_STARC_DSG

W424 VERILINT

Do not assign to a global
variable in a task.

B_3402 LEDA

CS_8C_R DESIGNWARE

SYN10_2 IEEE_RTL_SYNTH_
SUBSET

W426 VERILINT

Incompatible port
connection in module
instantiation.

DCVER_4 DC

SYN12_2 IEEE_RTL_SYNTH_
SUBSET

Specify blocks are ignored. DCVER_276 DC

SYN13_1 IEEE_RTL_SYNTH_
SUBSET

System task enables are not
allowed.

B_2000 LEDA

SYN14_1 IEEE_RTL_SYNTH_
SUBSET

TRIREG declarations are
not supported by synthesis.

DCVER_183 DC

SYN3_2_1_B IEEE_RTL_SYNTH_
SUBSET

VCS_2_4 VCS

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 405

Leda User Guide Appendix D: Leda Duplicated Rules

TRIOR declarations are not
supported by synthesis.

DCVER_180 DC

SYN3_2_10 IEEE_RTL_SYNTH_
SUBSET

Drive strengths in net
declaration are ignored.

DCVER_977 DC

E304 VERILINT

SYN3_2_2 IEEE_RTL_SYNTH_
SUBSET

Charge strengths are
ignored.

DCVER_277 DC

SYN3_2_3 IEEE_RTL_SYNTH_
SUBSET

TRIREG declarations are
not supported for synthesis

DCVER_182 DC

SYN3_2_7 IEEE_RTL_SYNTH_
SUBSET

TRIAND declarations are
not supported by synthesis

DCVER_179 DC

SYN3_2_8 IEEE_RTL_SYNTH_
SUBSET

TRI0 declarations are not
supported by synthesis.

DCVER_181 DC

SYN3_2_9 IEEE_RTL_SYNTH_
SUBSET

Time declarations are not
supported for synthesis.

DCVER_191 DC

SYN3_9_1 IEEE_RTL_SYNTH_
SUBSET

VCS_2_2 VCS

Real declarations are not
supported for synthesis.

DCVER_177 DC

SYN3_9_2 IEEE_RTL_SYNTH_
SUBSET

W294 VERILINT

Realtime declarations are
not supported for synthesis.

DCVER_178 DC

SYN3_9_3 IEEE_RTL_SYNTH_
SUBSET

Table 46: Duplicated Rule List

General Description Rule Label Policy

406 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

CASE EQUALITY (===) is
not supported by synthesis.

DCVER_189 DC

SYN4_1_2 IEEE_RTL_SYNTH_
SUBSET

FM_2_25 FORMALITY

CASE INEQUALITY (===)
is not supported by
synthesis.

DCVER_190 DC

SYN4_1_3 IEEE_RTL_SYNTH_
SUBSET

FM_2_26 FORMALITY

Do not use assignment in
net/signal declaration.

FM_2_6B FORMALITY

SYN6_1_1 IEEE_RTL_SYNTH_
SUBSET

Drive strength specification
for continuous assignment is
ignored.

DCVER_309 DC

SYN6_1_2 IEEE_RTL_SYNTH_
SUBSET

VCS_4 VCS

Delays for continuos
assignment are ignored.

DCVER_173 DC

SYN6_1_5 IEEE_RTL_SYNTH_
SUBSET

NMOS switches are not
supported.

DCVER_296 DC

SYN7_1_1 IEEE_RTL_SYNTH_
SUBSET

RTRANIF1 switches are not
supported.

DCVER_270 DC

SYN7_1_10 IEEE_RTL_SYNTH_
SUBSET

CMOS switches are not
supported.

DCVER_295 DC

SYN7_1_11 IEEE_RTL_SYNTH_
SUBSET

RCMOS switches are not
supported.

DCVER_265 DC

SYN7_1_12 IEEE_RTL_SYNTH_
SUBSET

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 407

Leda User Guide Appendix D: Leda Duplicated Rules

pull (pullup and pulldown)
gate instantiations are not
supported for synthesis.

VCS_3_7 VCS

SYN7_1_13 IEEE_RTL_SYNTH_
SUBSET

Drive strength specification
for tristate gate instantiation
is ignored.

DCVER_306 DC

SYN7_1_16 IEEE_RTL_SYNTH_
SUBSET

PMOS switches are not
supported.

DCVER_297 DC

SYN7_1_2 IEEE_RTL_SYNTH_
SUBSET

RNMOS switches are not
supported.

DCVER_266 DC

SYN7_1_3 IEEE_RTL_SYNTH_
SUBSET

RPMOS switches are not
supported.

DCVER_267 DC

SYN7_1_4 IEEE_RTL_SYNTH_
SUBSET

TRAN switches are not
supported.

DCVER_271 DC

SYN7_1_5 IEEE_RTL_SYNTH_
SUBSET

RTRAN switches are not
supported.

DCVER_268 DC

SYN7_1_6 IEEE_RTL_SYNTH_
SUBSET

TRANIF0 switches are not
supported.

DCVER_272 DC

SYN7_1_7 IEEE_RTL_SYNTH_
SUBSET

TRANIF1 switches are not
supported.

DCVER_273 DC

SYN7_1_8 IEEE_RTL_SYNTH_
SUBSET

RTRANIF0 switches are not
supported.

DCVER_269 DC

SYN7_1_9 IEEE_RTL_SYNTH_
SUBSET

Table 46: Duplicated Rule List

General Description Rule Label Policy

408 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

User-defined primitives
(UDPs) are not supported.

DCVER_275 DC

SYN8_1_1_B IEEE_RTL_SYNTH_
SUBSET

Initial statement not
supported.

DCVER_192 DC

FM_2_6A FORMALITY

Initial constructs are ignored
by synthesis tools.

SYN9_16 IEEE_RTL_SYNTH_
SUBSET

VER_2_3_4_2 VER_STARC_DSG

W430 VERILINT

Procedural-continuos
assignments are not
supported by synthesis.

DCVER_966 DC

SYN9_17 IEEE_RTL_SYNTH_
SUBSET

W20 VERILINT

The ‘deassign’ construct is
not supported by synthesis.

DCVER_969 DC

SYN9_18 IEEE_RTL_SYNTH_
SUBSET

W21 VERILINT

The ‘force’ construct is not
supported by synthesis.

DCVER_967 DC

SYN9_19 IEEE_RTL_SYNTH_
SUBSET

Missing or redundant
signals in the process
sensitivity list.

SC_107 SCIROCCO_CYCLE

SYN9_2 IEEE_RTL_SYNTH_
SUBSET

The ‘release’ construct is
not supported by synthesis.

DCVER_968 DC

SYN9_20 IEEE_RTL_SYNTH_
SUBSET

Delay statements are
ignored for synthesis.

DCVER_176 DC

SYN9_22 IEEE_RTL_SYNTH_
SUBSET

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 409

Leda User Guide Appendix D: Leda Duplicated Rules

Repeat constructs are not
supported in synthesis.

DCVER_219 DC

SYN9_24 IEEE_RTL_SYNTH_
SUBSET

WAIT statements are not
supported by synthesis.

DCVER_188 DC

SYN9_28 IEEE_RTL_SYNTH_
SUBSET

W43 VERILINT

Event triggers not
supported.

DCVER_193 DC

SYN9_29 IEEE_RTL_SYNTH_
SUBSET

VCS_2_3 VCS

Do not mix blocking and
non-blocking assignments in
a combinational always
block.

SYN9_3 IEEE_RTL_SYNTH_
SUBSET

VER_2_2_3_1 VER_STARC_DSG

FORK and JOIN constructs
are not supported by
synthesis.

DCVER_187 DC

SYN9_30 IEEE_RTL_SYNTH_
SUBSET

VER_2_7_4_3 VER_STARC_DSG

Event declarations are not
allowed.

B_2006 LEDA

DCVER_286 DC

SYN9_31 IEEE_RTL_SYNTH_
SUBSET

Clk name should be clk or
prefixed with clk.

B_4404 LEDA

G_521_6 RMM_RTL_CODING_
GUIDELINES

N_2C_R_A DESIGNWARE

VER_1_1_5_2A VER_STARC_DSG

VHD_1_1_5_2A VHD_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

410 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Process label should end
with _PROC.

B_4223 LEDA

G_5215_2 RMM_RTL_CODING_
GUIDELINES

Begin instance name with
U_.

B_4219 LEDA

G_5215_4 RMM_RTL_CODING_
GUIDELINES

I_3C_G DESIGNWARE

VER_1_1_1_8 VER_STARC_DSG

VHD_1_1_1_8 VHD_STARC_DSG

Types bit and bit_vector
should not be used.

G_531_4 RMM_RTL_CODING_
GUIDELINES

VHD_2_1_2_4 VHD_STARC_DSG

Block statements are not
allowed.

G_537_2 RMM_RTL_CODING_
GUIDELINES

VHD_2_1_10_1 VHD_STARC_DSG

Avoid using both positive-
edge and negative-edge
triggered flip-flops in your
design.

DFT_003 DFT

G_541_1 RMM_RTL_CODING_
GUIDELINES

Use of both rising edge and
falling edge triggered logic
will yield extra cycle mode
triggers which in turn will
degrade simulation
performance.

SC_204 SCIROCCO_CYCLE

VER_1_2_1_1B VER_STARC_DSG

VHD_1_2_1_1B VHD_STARC_DSG

Use signals instead of
variables (suitable for
synthesis).

G_556_1 RMM_RTL_CODING_
GUIDELINES

VHD_2_3_2_2 VHD_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 411

Leda User Guide Appendix D: Leda Duplicated Rules

Drivers of output port
should be registered: %s

C_1005 LEDA

DFT_009 DFT

G_561_1 RMM_RTL_CODING_
GUIDELINES

S_6C_R_A DEIGNWARE

VER_1_6_2_1A VER_STARC_DSG

VHD_1_6_2_1A VHD_STARC_DSG

Always use descending
range for multi-bit signals
and ports.

A_12C_R DESIGNWARE

R_521_10 RMM_RTL_CODING_
GUIDELINES

VER_2_1_6_1 VER_STARC_DSG

VHD_2_1_6_1 VHD_STARC_DSG

Port order should be the
following: in, out and inout.

R_5210_1_A RMM_RTL_CODING_
GUIDELINES

R_5210_1_B RMM_RTL_CODING_
GUIDELINES

VER_3_1_3_2 VER_STARC_DSG

VHD_3_1_3_2 VHD_STARC_DSG

Instantiate module by name.
Instantiating by position
may cause errors.

FM_2_7 FORMALITY

I_1C_R DESIGNWARE

R_5211_1 RMM_RTL_CODING_
GUIDELINES

VER_3_2_3_1 VER_STARC_DSG

VHD_3_2_3_1 VHD_STARC_DSG

W416 VERILINT

Process block should have a
label.

B_4001 LEDA

R_5215_1 RMM_RTL_CODING_
GUIDELINES

Table 46: Duplicated Rule List

General Description Rule Label Policy

412 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Module declarations should
have header comments.

R_524_1_A RMM_RTL_CODING_
GUIDELINES

VER_3_5_3_1 VER_STARC_DSG

VHD_3_5_3_1 VHD_STARC_DSG

Do not use Verilog or
VHDL keywords

R_529_1 RMM_RTL_CODING_
GUIDELINES

TK_6CP_R DESIGNWARE

VER_1_1_1_3A VER_STARC_DSG

VHD_1_1_1_3A VHD_STARC_DSG

Redundant signal <%item>
in sensitivity list.

B_3418 LEDA

FM_2_1A FORMALITY

R_554_1_A RMM_RTL_CODING_
GUIDELINES

W456 VERILINT

Do not use built-in Verilog
primitive <%item>.

G_536_2 RMM_RTL_CODING_
GUIDELINES

I_4C_R DESIGNWARE

Buffers must not be
explicitly added to the clock
path.

A_5C_R_A DESIGNWARE

C_1206 LEDA

G_542_1 RMM_RTL_CODING_
GUIDELINES

VER_1_4_2_1 VER_STARC_DSG

VHD_1_4_2_1 VHD_STARC_DSG

Always construct must start
with event control (always
@clk..).

G_551_1_B RMM_RTL_CODING_
GUIDELINES

SYN9_32 IEEE_RTL_SYNTH_
SUBSET

VER_2_3_3_2 VER_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 413

Leda User Guide Appendix D: Leda Duplicated Rules

Only one asynchronous
reset/set/load allowed in a
sequential block.

G_551_1_I RMM_RTL_CODING_
GUIDELINES

S_5C_R_B DESIGNWARE

C_1000 LEDA

C_8C_R DESIGNWARE

Avoid asynchronous
feedback loop.

FM_1_1 FORMALITY

G_553_1 RMM_RTL_CODING_
GUIDELINES

SC_305 SCIROCCO_CYCLE

TEST_960 DFT

VCS_1 VCS

VER_1_2_1_3 VER_STARC_DSG

VHD_1_2_1_3 VHD_STARC_DSG

A latch may be inferred for
<%item>

DFT_021 DFT

R_552_1 RMM_RTL_CODING_
GUIDELINES

SC_108 SCIROCCO_CYCLE

SYN9_5 IEEE_RTL_SYNTH_
SUBSET

S_4C_R DESIGNWARE

VER_2_4_1_2 VER_STARC_DSG

VHD_2_4_1_2 VHD_STARC_DSG

W410 VERILINT

Table 46: Duplicated Rule List

General Description Rule Label Policy

414 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

No blocking assignment are
allowed in a sequential
block.

B_3417 LEDA

CS_5P_R_A DESIGNWARE

FM_2_15 FORMALITY

R_555_1_A RMM_RTL_CODING_
GUIDELINES

SYN9_7 IEEE_RTL_SYNTH_
SUBSET

VCS_14 VCS

VER_2_3_1_1 VER_STARC_DSG

W336 VERILINT

Use blocking assignments in
combinatorial block.

B_3416 LEDA

CS_5P_R_B DESIGNWARE

FM_2_16 FORMALITY

R_555_1_B RMM_RTL_CODING_
GUIDELINES

VCS_15 VCS

W414 VERILINT

Reading from an output port
<%item>.

B_1001 LEDA

W446 VERILINT

Multiple non-tristate drivers
to signal <%item> detected.

C_1009 LEDA

FM_2_8 FORMALITY

VCS_17 VCS

VER_2_5_1_5 VER_STARC_DSG

VHD_2_5_1_5 VHD_STARC_DSG

W415 VERILINT

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 415

Leda User Guide Appendix D: Leda Duplicated Rules

Data must be registered by
flipflops when changing
clock domain.

B_1202 LEDA

DFT_006 DFT

VER_1_4_4_1 VER_STARC_DSG

VHD_1_4_4_1 VHD_STARC_DSG

W389 VERILINT

Do not use negative edge
fllipflop.

B_1203 LEDA

VER_1_4_3_6 VER_STARC_DSG

VHD_1_4_3_6 VHD_STARC_DSG

The clock signal <%item> is
not coming directly from a
port of the current unit.

B_1205 LEDA

W401 VERILINT

Asynchronous reset/set/load
<%item> exists in module/
unit.

B_1404 LEDA

DFT_019 DFT

W549 VERILINT

Do not use active high
asynchronous reset/set/load.

B_1407 LEDA

VER_2_3_6_2 VER_STARC_DSG

VHD_2_3_6_2 VHD_STARC_DSG

Do not use asynchronous
reset and asynchronous set
in same always block/
process statement.

B_1409 LEDA

VER_1_3_1_7 VER_STARC_DSG

VHD_1_3_1_7 VHD_STARC_DSG

Shift by a non constant
value is not allowed.

B_2001 LEDA

W244 VERILINT

Non synthesizable operator
=== !== encountered.

B_2010 LEDA

W339 VERILINT

Array of integer is not
allowed.

B_3001 LEDA

VCS_2_5 VCS

Table 46: Duplicated Rule List

General Description Rule Label Policy

416 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Unequal length operand in
comparison operator.

B_3201 LEDA

VER_2_10_3_1 VER_STARC_DSG

VHD_2_10_3_1 VER_STARC_DSG

Delay is not a constant
expression.

B_3202 LEDA

W129 VERILINT

? in based number constant
is not allowed.

B_3204 LEDA

W467 VERILINT

X in based number constant. B_3206 LEDA

W443 VERILINT

Empty block found. No
statements in block.

B_3400 LEDA

W192 VERILINT

Blocking delay not allowed
in non-blocking assignment.

B_3401 LEDA

DCVER_130 DC

Case statement should have
a default case.

B_3403 LEDA

VHD_2_8_1_4 VHD_STARC_DSG

while condition expression
is constant.

B_3409 LEDA

W228 VERILINT

Process must have a header
comment.

B_4000 LEDA

R_525_1_D RMM_RTL_CODING_
GUIDELINES

Subprogram must have a
header comment.

B_4002 LEDA

R_525_1_E RMM_RTL_CODING_
GUIDELINES

File names should be as
follows <entity>.vhd.

B_4201 LEDA

VHD_1_1_1_1 VHD_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 417

Leda User Guide Appendix D: Leda Duplicated Rules

Architecture names should
be RTL, BEH, SIM(TB).

B_4202 LEDA

VHD_1_1_6_1 VHD_STARC_DSG

Naming conventions fro
module name. Name should
end in _MOD.

B_4203 LEDA

MF_1C_R_A DESIGNWARE.

MF_1C_R_B DESIGNWARE.

MF_1C_R_C DESIGNWARE.

MF_1C_R_D DESIGNWARE.

MF_4C_R DESIGNWARE

Entity and architecture
should be in the same file.

B_4204 LEDA

VHD_1_1_6_4 VHD_STARC_DSG

File names should be as
follows: <module name>.v

B_4205 LEDA

MF_3C_R DESIGNWARE

VER_1_1_1_1 VER_STARC_DSG

Naming conventions for
package declaration file
name. File name should be
<package>.vhd

B_4207 LEDA

VHD_1_1_4_1 VHD_STARC_DSG

Naming conventions for
signal name. name should
begin with S.

B_4211 LEDA

VHD_1_1_3_1 VHD_STARC_DSG

Name all always blocks
<name>_PROC.

B_4222 LEDA

N_7C_G DESIGNWARE

Table 46: Duplicated Rule List

General Description Rule Label Policy

418 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Register name should end
with _reg or _REG.

B_4403 LEDA

G_521_13_B RMM_RTL_CODING_
GUIDELINES

VER_1_1_5_1A VER_STARC_DSG

VER_1_1_5_1B VER_STARC_DSG

VHD_1_1_5_1A VHD_STARC_DSG

VHD_1_1_5_1B VHD_STARC_DSG

Naming conventions for
asynchronous reset. Name
should begin with rst.

B_4405 LEDA

N_2C_R_B DESIGNWARE

Naming conventions for
tristate signals. Name should
end in _z.

B_4407 LEDA

G_521_13_A RMM_RTL_CODING_
GUIDELINES

Only one clock allowed in
the design. <%value> clock
have been identified.

C_1200 LEDA

SC_303 SCIROCCO_CYCLE

VER_1_2_1_1A VER_STARC_DSG

VHD_1_2_1_1A VHD_STARC_DSG

Clock is being used as data. C_1201 LEDA

DCHDL_175 DC

VER_1_4_3_4 VER_STARC_DSG

VHD_1_4_3_4 VHD_STARC_DSG

W403 VERILINT

Data must be registered by 2
flipflops when changing
clock domains.

A_3C_R DESIGNWARE

C_1202 LEDA

VER_1_5_1_1 VER_STARC_DSG

VHD_1_5_1_1 VHD_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 419

Leda User Guide Appendix D: Leda Duplicated Rules

Internally generated clock
detected

C_1203 LEDA

DFT_002 DFT

G_544_1 RMM_RTL_CODING_
GUIDELINES

SC_301 SCIROCCO_CYCLE

VER_1_4_3_2 VER_STARC_DSG

VHD_1_4_3_2 VHD_STARC_DSG

No gated clock except in
clock generator CKGEN.

C_1204 LEDA

VER_1_4_1_1 VER_STARC_DSG

VHD_1_4_1_1 VHD_STARC_DSG

Gated clocks are not
allowed in the design.

A_5C_R_B DESIGNWARE

C_1207 LEDA

G_543_1 RMM_RTL_CODING_
GUIDELINES

SC_300 SCIROCCO_CYCLE

Gated reset/set/load are not
allowed in the design.

A_5C_R_D DESIGNWARE

C_1401 LEDA

No gated reset/set/load
except in reset/set/load
generator RSTGEN.

C_1402 LEDA

VER_1_3_2_1 VER_STARC_DSG

VHD_1_3_2_1 VHD_STARC_DSG

Buffers must not be
explicitly added to reset/set/
load paths.

A_5C_R_C DESIGNWARE

C_1403 LEDA

Missing or redundant
signals in the sensitivity list
of a combinational block.
Signal <%item> is missing
or redundant.

C_2C_R DESIGNWARE

VCS_5 VCS

Table 46: Duplicated Rule List

General Description Rule Label Policy

420 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Global variable <%item> is
referenced in a function.

CS_7C_R_A DESIGNWARE

VER_2_1_2_3 VER_STARC_DSG

W425 VERILINT

Only one clock is allowed in
an always block.

S_5C_R_A DESIGNWARE

W394 VERILINT

Keyword TRANSPORT
ignored in signal
assignment.

DCVHDL_2098 DC

FM_2_27 FORMALITY

SC_102 SCIROCCO_CYCLE

Internally generated
asynchronous reset/set/load
<%item> detected.

SC_302 SCIROCCO_CYCLE

VER_1_3_2_2 VER_STARC_DSG

VHD_1_3_2_2 VHD_STARC_DSG

Not all cases are covered in
full case.

FM_2_12 FORMALITY

W455 VERILINT

Case choice after the default
may be ignored by some
simulation tools.

FM_2_18 FORMALITY

VER_2_8_3_5 VER_STARC_DSG

W187 VERILINT

Possible range overflow. FM_2_22 FORMALITY

VER_2_1_6_4 VER_STARC_DSG

Clock <%item> must be
directly controllable from
external input port.

TEST_953 DFT

VER_3_3_1_1 VER_STARC_DSG

VHD_3_3_1_1 VHD_STARC_DSG

Asynchronous reset/set/load
<%item> must be directly
controllable from external
input port.

TEST_966 DFT

VER_3_3_1_4 VER_STARC_DSG

VHD_3_3_1_4 VHD_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 421

Leda User Guide Appendix D: Leda Duplicated Rules

Tri-state is detected. DFT_008 DFT

VER_2_5_1_1 VER_STARC_DSG

VHD_2_5_1_1 VHD_STARC_DSG

Synchronous reset/set/load
<%item> detected.

DFT_017 DFT

W548 VERILINT

Intra-assignment
repeat-event controls for
non-blocking assignments
are ignored.

DCVER_135 DC

W300 VERILINT

Infinite recursion detected. DCHDL_96 DC

VHD_2_1_8_5 VHD_STARC_DSG

Use a separate line for each
HDL statement.

R_526_1 RMM_RTL_CODING_
GUIDELINES

VER_3_1_4_4 VER_STARC_DSG

VHD_3_1_4_4 VHD_STARC_DSG

The number of characters in
one line should not exceed
72 (line <%value>)

G_527_1 RMM_RTL_CODING_
GUIDELINES

VHD_3_1_4_5 VHD_STARC_DSG

Gate instance with too few
ports. Port <%format> is not
completely connected.

B_1011 LEDA

DCVER_154 DC

W287 VERILINT

Only uppercase characters
are allowed for parameters.

G_521_3_B RMM_RTL_CODING_
GUIDELINES

P_3C_G DESIGNWARE

VER_1_1_4_2 VER_STARC_DSG

Allocators are not supported
for synthesis.

DCVHDL_2100 DC

SC_029 SCIROCCO_CYCLE

Table 46: Duplicated Rule List

General Description Rule Label Policy

422 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

No glue logic at top level. A_8C_R DESIGNWARE

C_1004 LEDA

G_568_1 RMM_RTL_CODING_
GUIDELINES

VER_1_6_4_1 VER_STARC_DSG

VHD_1_6_4_1 VHD_STARC_DSG

Header, modification,
description, date, author,
filename field missing from
header comment.

R_524_1_B RMM_RTL_CODING_
GUIDELINES

R_524_1_C RMM_RTL_CODING_
GUIDELINES

R_524_1_D RMM_RTL_CODING_
GUIDELINES

R_524_1_E RMM_RTL_CODING_
GUIDELINES

R_524_1_F RMM_RTL_CODING_
GUIDELINES

Do not use SDF, EDIF or
window keywords.

VER_1_1_1_3B VER_STARC_DSG

VHD_1_1_1_3B VHD_STARC_DSG

Hard coded value for bus
size is not recommended.

VER_1_1_4_7 VER_STARC_DSG

VHD_1_1_4_7 VHD_STARC_DSG

Reset names should be RST,
plus upto 3 extra characters
when multiple resets exists.

VER_1_1_5_2B VER_STARC_DSG

VHD_1_1_5_2B VHD_STARC_DSG

Use asynchronous reset for
initial reset to registers.

S_1C_R DESIGNWARE

VER_1_3_1_2 VER_STARC_DSG

VHD_1_3_1_2 VHD_STARC_DSG

Number of I/O ports should
be less than 200. This
module has <%value> ports.

VER_1_6_4_3 VER_STARC_DSG

VHD_1_6_4_3 VHD_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 423

Leda User Guide Appendix D: Leda Duplicated Rules

LSB of an array should be
zero whenever possible.

VER_2_1_6_2 VER_STARC_DSG

VHD_2_1_6_2 VHD_STARC_DSG

Do not use operators in
index of array.

VER_2_1_6_3 VER_STARC_DSG

VHD_2_1_6_3 VHD_STARC_DSG

Insertion of delay
expressions in assignments
that infer flipflops is
recommended.

VER_2_3_1_3 VER_STARC_DSG

VHD_2_3_1_3 VHD_STARC_DSG

Use positive integers for
delay values in assignments
that infer flipflops.

VER_2_3_1_5 VER_STARC_DSG

VHD_2_3_1_5 VHD_STARC_DSG

If statement in
combinational circuit should
end with else (not with else
if).

VER_2_7_1_3 VER_STARC_DSG

VHD_2_7_1_3 VHD_STARC_DSG

Number of nested elements
in if_statement should be 5
or less.

VER_2_7_3_1 VER_STARC_DSG

VHD_2_7_3_1 VHD_STARC_DSG

Do not use multiple event
control in combinational
always block.

VER_2_2_2_3 VER_STARC_DSG

VHD_2_2_2_3 VHD_STARC_DSG

Using delay values in
assignments other than those
inferring flipflops are not
recommended.

VER_2_3_1_4 VER_STARC_DSG

VHD_2_3_1_4 VHD_STARC_DSG

Nested event control
(@clk1..@clk2) detected.
This is not synthesizable.

VER_2_3_3_1 VER_STARC_DSG

W112 VERILINT

Duplicated case item
detected.

VER_2_8_1_3 VER_STARC_DSG

W547 VERILINT

Do not use defparam. VER_3_2_4_3 VER_STARC_DSG

W509 VERILINT

Function descriptions should
end with return statements.

VER_2_1_3_4 VER_STARC_DSG

W489 VERILINT

Table 46: Duplicated Rule List

General Description Rule Label Policy

424 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Do not change values inside
loop variables.

VER_2_9_1_2 VER_STARC_DSG

W601 VERILINT

In module instantiation, pin
name and net name should
be the same.

G_521_11 RMM_RTL_CODING_
GUIDELINES

N_8C_G DESIGNWARE

VER_1_1_2_6 VER_STARC_DSG

VHD_1_1_2_6 VHD_STARC_DSG

Missing signal <%item> in
sensitivity list.

B_3419 LEDA

FM_2_1B FORMALITY

R_554_1_B RMM_RTL_CODING_
GUIDELINES

W122 VERILINT

Unequal length LHS and
RHS in assignment.

B_3208 LEDA

FM_2_17 FORMALITY

VER_2_10_3_2 VER_STARC_DSG

Unequal length port and
connexion in module
instantiation.

B_3209 LEDA

VER_3_2_3_2 VER_STARC_DSG

W110 VERILINT

XV2_1807 XILINX

XV2P_1807 XILINX

Unequal length arguments in
function call or task enable.

B_3210 LEDA

VER_2_1_3_1 VER_STARC_DSG

Unequal length between
case expression and case
item condition in case, casex
or casez.

B_3211 LEDA

VER_2_8_1_6 VER_STARC_DSG

W263 VERILINT

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 425

Leda User Guide Appendix D: Leda Duplicated Rules

<%value> blocks used to
code state machine. One
block should be used.

B_3600 LEDA

CS_1C_R DESIGNWARE

<%value> blocks used to
code state machine. Two
blocks should be used.

B_3601 LEDA

G_559_1 RMM_RTL_CODING_
GUIDELINES

VER_2_11_3_1 VER_STARC_DSG

VHD_2_11_3_1 VHD_STARC_DSG

Moore style description of
state machine is
recommended.

B_3602 LEDA

VER_2_11_1_1 VER_STARC_DSG

VHD_2_11_1_1 VHD_STARC_DSG

Assign a default state to the
state machines.

B_3604 LEDA

G_559_4 RMM_RTL_CODING_
GUIDELINES

Use parameter declarations
to define the state vector of a
state machine.

B_3605_A LEDA

G_559_2_A RMM_RTL_CODING_
GUIDELINES

VER_2_11_1_3 VER_STARC_DSG

Use an enumerated type to
define the state vector of a
state machine.

B_3605_B LEDA

G_559_2_B RMM_RTL_CODING_
GUIDELINES

Naming convention for state
variables. Name should end
in _cs.

B_3606 LEDA

CS_2C_R RMM_RTL_CODING_
GUIDELINES

The number of states in a
state machine should be less
than 40.

B_3608 LEDA

VER_2_11_1_4 VER_STARC_DSG

VHD_2_11_1_4 VHD_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

426 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

In state machine, keep FSM
logic and non-FSM logic
apart.

B_3609 LEDA

VER_2_11_2_1 VER_STARC_DSG

VHD_2_11_2_1 VHD_STARC_DSG

G_559_3 RMM_RTL_CODING_
GUIDELINES

Flipflop with fixed value
data input is detected.

C_1001 LEDA

VER_2_3_5_1 VER_STARC_DSG

VHD_2_3_5_1 VHD_STARC_DSG

Signal is used both as
synchronous and
asynchronous reset/set/load.

C_1404 LEDA

VER_1_3_1_6 VER_STARC_DSG

VHD_1_3_1_6 VHD_STARC_DSG

Missing signal <%item> in
sensitivity list of
combinational always block.

VER_2_2_2_1 VER_STARC_DSG

VHD_2_2_2_1 VHD_STARC_DSG

Redundant signal <%item>
in sensitivity list of
combinational always block.

VER_2_2_2_2B VER_STARC_DSG

VHD_2_2_2_2 VHD_STARC_DSG

ifdef detected. VER_3_1_6_1 VER_STARC_DSG

W529 VERILINT

Flip-flop assigned but not
initialized.

B_1403 LEDA

W396 VERILINT

Latch enabled by a clock
feeds latches enabled by the
same clock.

TEST_974 DFT

VER_2_4_1_5 VER_STARC_DSG

VHD_2_4_1_5 VHD_STARC_DSG

Instance name should be
atleast 2 characters.

VER_1_1_2_1C VER_STARC_DSG

VHD_1_1_2_1C VHD_STARC_DSG

Instance name should not
exceed 32 characters.

VER_1_1_2_1D VER_STARC_DSG

VHD_1_1_2_1D VHD_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 427

Leda User Guide Appendix D: Leda Duplicated Rules

Do not use more than one
arithmetic operators in one
line.

VER_2_10_6_7 VER_STARC_DSG

VHD_2_10_6_7 VHD_STARC_DSG

Do not use arithmetic
operation in the conditional
expression of if statement.

VER_2_10_7_1 VER_STARC_DSG

VHD_2_10_7_1 VHD_STARC_DSG

Latch inferred, make sure
that this latch does not have
any asynchronous reset/set/
load.

VER_2_4_1_3 VER_STARC_DSG

VHD_2_4_1_3 VHD_STARC_DSG

Tristate buffers connection
should not exceed more than
5.

VER_2_5_1_4 VER_STARC_DSG

VHD_2_5_1_4 VHD_STARC_DSG

Inout should not be directly
connected to output.

VER_2_5_1_6 VER_STARC_DSG

VHD_2_5_1_6 VHD_STARC_DSG

Do not use constant value in
the expression of a case_
statement.

VER_2_8_5_2 VER_STARC_DSG

W226 VERILINT

Case item expression is not
constant.

VER_2_8_5_3 VER_STARC_DSG

W225 VERILINT

Output ports should be
registered.

VER_1_6_2_1B VER_STARC_DSG

VHD_1_6_2_1B VHD_STARC_DSG

Active low signals should
have suffix _X_N.

VER_1_1_1_7 VER_STARC_DSG

VHD_1_1_1_7 VHD_STARC_DSG

Do not use module names or
instance names that are the
same as library cell names.

VER_1_1_1_10 VER_STARC_DSG

VHD_1_1_1_10 VHD_STARC_DSG

Do not assign ‘X’ except for
the default clause of case
statements.

VER_2_10_1_5 VER_STARC_DSG

VHD_2_10_1_4 VHD_STARC_DSG

Static data types are not
supported in $root.

DC_31 DC

VCS_31 VCS

Table 46: Duplicated Rule List

General Description Rule Label Policy

428 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Casting is not supported. DC_42 DC

VCS_42 VCS

Import/export of tasks and
functions is not supported.

DC_53 DC

VCS_53 VCS

Process statement is not
supported.

DC_54 DC

VCS_54 VCS

Nested module/interface
declaration is not supported.

DC_55 DC

VCS_55 VCS

Do not use asynchronous
reset and asynchronous set
in same always block.

VER_1_3_1_7 VER_STARC_DSG

VHD_1_3_1_7 VHD_STARC_DSG

Delays are ignored by
synthesis tool.

FM_2_2 FORMALITY

W257 VERILINT

Range index out of bound. DCVER_256 DC

E267 VERILINT

Name too long for compiled
code.

DCHDL_389 DC

VHD_1_1_2_1B VHD_STARC_DSG

The number of lines in
always statements should
not exceed 200.

VER_2_6_1_4 VER_STARC_DSG

VHD_2_6_1_4 VHD_STARC_DSG

Do not use multiple if
statements in the same
process statement.

VER_2_6_2_1A VER_STARC_DSG

VHD_2_6_2_1A VHD_STARC_DSG

Do not use multiple case
statements in the same
process statement.

VER_2_6_2_1B VER_STARC_DSG

VHD_2_6_2_1B VHD_STARC_DSG

Do not use implicit wire
declaration.

W154 VERILINT

VCS_10 VCS

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 429

Leda User Guide Appendix D: Leda Duplicated Rules

Do not mix signed and
unsigned operands in same
operation.

B_3212 LEDA

VER_2_10_6_3 VER_STARC_DSG

Do not use asynhronous set
or reset pins for anything
other than initial reset.

NTL_RST05 DESIGN

VER_1_3_1_3 VER_STARC_DSG

VHD_1_3_1_3 VHD_STARC_DSG

Limit gate size of a single
level to 10000 gates.

NTL_STR99 DESIGN

VER_1_6_1_1 VER_STARC_DSG

VHD_1_6_1_1 VHD_STARC_DSG

Hierarchy should contain
2000-10000 gates.

NTL_STR100 DESIGN

VER_1_6_1_2 VER_STARC_DSG

VHD_1_6_1_2 VHD_STARC_DSG

Do not use logic in
conditional expression to
infer tristate.

NTL_STR37 DESIGN

VER_2_5_1_2 VER_STARC_DSG

VHD_2_5_1_2 VHD_STARC_DSG

The output of random logic
should not be used as a
clock.

NTL_CLK12 DESIGN

VER_3_3_1_3 VER_STARC_DSG

VHD_3_3_1_3 VHD_STARC_DSG

A clock must not be
connected to the D input of a
flip-flop.

NTL_STR61 DESIGN

VER_3_3_3_1 VER_STARC_DSG

VHD_3_3_3_1 VHD_STARC_DSG

VDD or GND should not be
connected to the D input of a
flip-flop.

NTL_DFT41 DESIGN

VER_3_3_3_2 VER_STARC_DSG

VHD_3_3_3_1 VHD_STARC_DSG

Table 46: Duplicated Rule List

General Description Rule Label Policy

430 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

Do not mix clock and reset
lines.

NTL_STR18 DESIGN

VER_3_3_6_2 VER_STARC_DSG

VHD_3_3_6_2 VHD_STARC_DSG

A flip-flop output must not
be directly connected to an
asynchronous set or reset.

NTL_RST06 DESIGN

VER_3_3_6_3 VER_STARC_DSG

VHD_3_3_6_3 VHD_STARC_DSG

Tristate enable signals
should be controllable from
the outside.

NTL_STR54 DESIGN

VER_3_3_8_2 VER_STARC_DSG

VHD_3_3_8_2 VHD_STARC_DSG

Gated clocks can only be
used at the top level.

NTL_CLK18 DESIGN

VER_3_4_1_1 VER_STARC_DSG

VHD_3_4_1_1 VHD_STARC_DSG

Detected internally
generated clocks.

NTL_CLK04 DESIGN

XV2_1203 XILINX

XV2P_1203 XILINX

Detected input DDR
flip-flop.

NTL_STR92 DESIGN

XV2_1206 XILINX

XV2P_1206 XILINX

Black box components not
in Xilinx DB libraries is
detected.

NTL_STR22 DESIGN

XV2_1614 XILINX

XV2P_1614 XILINX

Output double data rate
register functionality is
detected.

NTL_STR93 DESIGN

XV2_1615 XILINX

XV2P_1615 XILINX

Table 46: Duplicated Rule List

General Description Rule Label Policy

June 2006 Synopsys, Inc. 431

Leda User Guide Appendix D: Leda Duplicated Rules

Flip-flip that likely to be
merged in synthesis is
detected.

NTL_STR85 DESIGN

XV2_1616 XILINX

XV2P_1616 XILINX

Table 46: Duplicated Rule List

General Description Rule Label Policy

432 Synopsys, Inc. June 2006

Appendix D: Leda Duplicated Rules Leda User Guide

June 2006 Synopsys, Inc. 433

Leda User Guide Appendix E: Errors and Warnings Message List

E
Errors and Warnings Message List

Introduction
Each table in this appendix lists the compilation and elaboration Error, Warning, Fatal,
and Note messages that you may encounters while using Leda.

Verilog Compilation Warnings

Label Messages

CMPVE004 Unit %s not found in any known library

CMPVE005 Identifier expected after unit name

CMPVE006 Symbol %s is already defined and cannot be redefined as %s

CMPVE007 Symbol %s is not declared in %s %s

CMPVE008 Symbol %s is not defined as %s in %s %s

CMPVE009 Symbol %s has already been defined as input or inout and cannot be
redefined as %s

CMPVE010 Unit %s has already been compiled (must be defined twice)

CMPVE011 Unexpected character

CMPVE012 A strength of level %s has already been defined

CMPVE013 Strength value highz1 cannot be used with highz0

CMPVE014 The %s %s declaration should contain at least one input port
declaration

434 Synopsys, Inc. June 2006

Chapter : Leda User Guide

CMPVE015 The symbol %s is not defined as %s

CMPVE016 Global reference of the memory or variable array %s is not allowed

CMPVE017 Operation not allowed on Real

CMPVE018 Integer are limited to 32 bits

CMPVE019 Constant expression required

CMPVE020 Symbol %s has not been defined

CMPVE021 Multiplier of a multiple concatenation must be a constant expression

CMPVE022 Symbol %s is not declared as a function

CMPVE023 Too many arguments in %s

CMPVE024 Too few arguments in %s

CMPVE025 %s is not allowed in a function

CMPVE026 function %s should contain at least one result assignment

CMPVE027 Symbol %s is not declared as a task

CMPVE028 Corresponding port is declared as a Inout or Output so a LValue is
expected

CMPVE029 Expression is not a correct lvalue

CMPVE030 Index reference is not allowed on the item %s

CMPVE031 Slice reference is not allowed on the item %s

CMPVE032 The symbol %s has been declared as a memory and cannot drive a port

CMPVE033 A port named %s has already been defined

CMPVE034 Port %s is not declared in the module/primitive definition

CMPVE035 Symbol %s has not been declared as event

CMPVE036 Symbol %s is not a declarative region

CMPVE037 No port named %s is defined in the module %s

CMPVE038 Too many port connection

CMPVE039 Not enough port connection

CMPVE040 Delay control is not allowed in %s instantiation

Label Messages

June 2006 Synopsys, Inc. 435

Leda User Guide Appendix E: Errors and Warnings Message List

CMPVE041 Drive Strength is not allowed in %s instantiation

CMPVE042 Only a delay2 is possible to specify in a primitive instantiation

CMPVE043 The port %s should be an input

CMPVE044 The first port of a UDP must be an output

CMPVE045 Combinational entry is expected in a combinational table

CMPVE046 Sequential entry is expected in a sequential table

CMPVE047 Macro %s is not defined

CMPVE048 Not enough argument to call macro %s

CMPVE049 Too many arguments to call macro %s

CMPVE050 Unexpected endif

CMPVE051 Missing endif

CMPVE052 %s is not a valid default net type

CMPVE053 Invalid argument for unconnected drive

CMPVE054 Invalid time unit

CMPVE055 Duplicate default alternative in case statement

CMPVE056 Port is not connected

CMPVE057 Badly formed identifier, a simple identifier must start with a letter
\nUse option \"-k95e\" to accept name starting with ‘_’

CMPVE058 Slice reference is not allowed on object %s : %s is a scalar object

CMPVE059 No initial statement is allowed in combinational entry

CMPVE060 Attempt to divide by zero

CMPVE061 Badly formed number

CMPVE062 A register must be declared as output in a sequential UDP

CMPVE063 No register must be declared in a combinational UDP

CMPVE064 %s is not allowed in sequential entry

CMPVE065 %s is not allowed in combinational entry

CMPVE066 %s is not allowed in sequential output

Label Messages

436 Synopsys, Inc. June 2006

Chapter : Leda User Guide

CMPVE067 %s is not allowed in combinational output

CMPVE068 %s is not allowed in sequential current state

CMPVE069 Duplicate entry in table

CMPVE070 Since all inputs of this entry are specified to 'X', the outputs must be
specified to “X”

CMPVE071 Only indexed references are allowed on memories

CMPVE072 No module or primitive definition found in input file(s)

CMPVE073 Error in index or range expression : real type expressions are not
allowed

CMPVE074 The output of a primitive gate must be a scalar net

CMPVE075 The net or reg should have the same range as the port of the same name

CMPVE076 Illegal reference to block %s: a block name cannot be a used as a
terminal reference

CMPVE077 An integer or time port cannot be declared as signed

CMPVE078 Genvar lvalue expected in a genvar assignment statement

CMPVE079 Declarations must precede statements in a named block

CMPVE080 Illegal declaration in anonymous block

CMPVE081 Syntax Error, unexpected token %s in variable declaration

CMPVE082 Syntax Error, unexpected %s in module or udp instantiation

CMPVE083 Syntax Error: %s is already defined in current module or interface
declaration

CMPVE084 Syntax Error: received %s while expecting s, ms, us, ns, ps or fs

CMPVE085 Symbol %s is already defined in the current scope

CMPVE086 %s data type is not allowed in packed structure/union

CMPVE087 End name : %s doesn't match the name of the named block : %s

CMPVE088 End name %s doesn't match module/primitive/block name %s

CMPVE089 Use of data type is not allowed in this expression

CMPVE090 Library %s not found

Label Messages

June 2006 Synopsys, Inc. 437

Leda User Guide Appendix E: Errors and Warnings Message List

Verilog Compilation Failures

CMPVE091 Reference to an obsolete version of unit %s appears in the context
clause

CMPVE092 Design file is empty

CMPVE093 Unit %s successfully analyzed and stored

Label Messages

CMPVE094 Design unit %s not found in library %s

CMPVE095 Memory Allocation Failure %s

CMPVE096 Error reading file %s

CMPVE097 Can't open file %s

CMPVE098 Syntax Error

CMPVE099 Preprocessor encountered errors

CMPVE100 Syntax Error

CMPVE101 %s doesn't exist or is not a directory

CMPVE102 Syntax Error : ANSI-C port declaration allowed only in Verilog'2001
& System Verilog mode

CMPVE103 Syntax Error : signed declarations allowed only in Verilog'2001 mode

CMPVE104 Syntax Error : disabling implicit net declaration is allowed only in
Verilog'2001 mode

CMPVE105 Maximum macro expansion depth reached, this is probably a recursive
macro expansion

CMPVE106 Syntax Error : illegal port type in %s

CMPVE107 Syntax Error : illegal implicit connection mix \"implicit .name\" and
\"implicit .*\"

CMPVE108 End of compilation: error(s) in design unit %s

CMPVE109 Maximum number of semantic errors reached. Compilation stopped

CMPVE110 Syntax error : received %s %s

Label Messages

438 Synopsys, Inc. June 2006

Chapter : Leda User Guide

CMPVE111 Syntax error : %s is not allowed in %s

CMPVE112 Syntax error : %s is allowed only for Verilog2001 or System Verilog
mode

CMPVE113 Syntax error : %s is allowed only for System Verilog mode

CMPVE110 Syntax error : received %s

CMPVE111 Syntax error : localparam declaration is not allowed in module
parameter port list

CMPVE094 Design unit %s not found in library %s

CMPVE095 Memory Allocation Failure %s

CMPVE096 Error reading file %s

CMPVE097 Can't open file %s

CMPVE098 Syntax Error

CMPVE099 Preprocessor encountered errors

CMPVE100 Syntax Error

CMPVE101 %s doesn't exist or is not a directory

CMPVE102 Syntax Error : ANSI-C port declaration allowed only in Verilog'2001
& System Verilog mode

CMPVE103 Syntax Error : signed declarations allowed only in Verilog'2001 mode

CMPVE104 Syntax Error : disabling implicit net declaration is allowed only in
Verilog'2001 mode

CMPVE105 Maximum macro expansion depth reached, this is probably a recursive
macro expansion

CMPVE106 Syntax Error : illegal port type in %s

CMPVE107 Syntax Error : illegal implicit connection mix \"implicit .name\" and
\"implicit .*\"

CMPVE108 End of compilation: error(s) in design unit %s

CMPVE109 Maximum number of semantic errors reached. Compilation stopped

CMPVE110 Syntax error : received %s %s

CMPVE111 Syntax error : %s is not allowed in %s

Label Messages

June 2006 Synopsys, Inc. 439

Leda User Guide Appendix E: Errors and Warnings Message List

CMPVE112 Syntax error : multi-dimensional arrays allowed only in Verilog2001

CMPVE113 unexpected symbol %s

CMPVE114 Syntax error : %s is not allowed in %s in %s

CMPVE115 Syntax error : %s

CMPVE116 %s is allowed only in $root module

CMPVE117 Design \"%s\" not found

CMPVE118 %s

CMPVE119 No default working library specified: use the <set> command

CMPVE120 Syntax error : included filename should begin with '\"' or '<'"

LIB001 Intermediate file name too long for design unit %s

CMPVE112 Syntax error : multi-dimensional arrays allowed only in Verilog2001

CMPVE113 unexpected symbol %s

CMPVE114 Syntax error : %s is not allowed in %s in %s

CMPVE115 Syntax error : %s

CMPVE116 %s is allowed only in $root module

CMPVE117 Design \"%s\" not found

CMPVE118 %s

CMPVE119 No default working library specified: use the <set> command

CMPVE120 Syntax error : included filename should begin with '\"' or '<'"

LIB001 Intermediate file name too long for design unit %s

Label Messages

440 Synopsys, Inc. June 2006

Chapter : Leda User Guide

Deselectable Messages
You can deselect the following message labels using the rule_deselect command in the
configuration file. For example:

rule_deselect -rule WV951019

rule_deselect -rule WV951008

Label Messages

EV951 Index reference is not allowed on the item %s

EV952 Slice reference is not allowed on the item %s

EV953 Global reference is not allowed on the item %s

ESV3 %s statement is legal only within a loop scope

ESV2 \"return\" statement is legal only within a function or a task

ESV1 Invalid initialization at declaration \n\tNon-module variable \"%s\"
cannot be initialized at declaration

ESV2 Property expression cannot be negated twice

ESV3 Illegal use of dollar sign at this place

ESV4 Illegal use of %s before its definition

EV2K2 Illegal assignment of %s at this place

NV950 Unit %s is correct, checked only, not stored in library

NV954 Unit %s is used before it's definition in module %s

NV956 Skipping source library file %s, unable to preprocess it

WV9542 Loaded unit %s.%s is VHDL\'%d and current unit is VHDL\'%d:
inconsistencies may occur...

WV950 The %s %s will be replaced by the %s of the same name !

WV951001 \"vectored\" or \"scalared\" keywords are meaningless for the defini-
tion of the scalar net %s

WV951002 Drive Strength definition is meaningless because the net %s is not
assigned

WV951003 Extra digit in %s : The number has a declared size of %d binary digits
and an actual size of %d, the additional left bits are ignored

WV951005 Elements of mintypmax expression should result of the same type

June 2006 Synopsys, Inc. 441

Leda User Guide Appendix E: Errors and Warnings Message List

WV951008 The unit %s is not a verilog unit. Instantiation of a non verilog unit is
not supported for the time being

WV951009 Redefinition of macro %s

WV951010 Redefinition of %s %s, only the latest will be compiled

WV951011 Redefinition of the net %s

WV951013 Name is too long for compiled code...

WV951014 No instance name

WV951015 Empty Port in %s

WV951016 %s is a Verilog'2001 keyword and should not be used as an identifier

WV951017 Enumeration label exceeds maximum value

WV951018 not enough port connections for module %s

WV951019 Too many port connection for module %s

WV951020 No port named %s is defined in the module %s

WV951021 Invalid file for -y library : unit name \"%s\" doesn't match file name
\"%s\ "

CMP0001 Do not access directly an interface object, use the interface through a
modport

CMP0002 No type specified for parameter %s

CMP0003 Do not use `timescale directive

CMP0004 Prefix enumerated member with the type name : enum member \"%s\"
should be named \"%s_%s\"

CMP0005 The interface object \"%s\" has been declared as output for at least two
modports : \"%s\" and \"%s\"

CMP0006 Assertion statement should always have a label

CMP0007 Task/function/net shall be declared before it is used in modports

CMP0008 Enumerated type should be based on specified type

CMP0009 Do not use hard coded values

Label Messages

442 Synopsys, Inc. June 2006

Chapter : Leda User Guide

Elaboration Failure Messages

Elaboration Error Messages

Label Messages

ELB004 Library unit %s:%s has not been successfully compiled: so elaboration
can not be performed

ELB005 File error format %s not found

ELB006 Memory allocation failure

ELB007 Free memory failure

ELB008 Invalid access to region %d maximum depth :%d !

ELB009 Unit %s of library %s is obsolete versus the elaborator: please recom-
pile unit

ELB010 Unit %s of library %s has a newer version than the elaborator: please
get the last elaborator

ELB014 File %s not found to store information about successive elaborated
units

ELB015 Value for %s exceeds capacity of external reference

ELB016 External references not yet initialized before use

Label Messages

ELB017 No library with logical name %s

ELB018 No library with physical name %s

ELB019 Unit %s is not a vhdl model

ELB020 Unit %s is not a package

ELB021 Unit %s of library %s is obsolete: it is using more recent unit %s of
library %s

ELB022 No unit %s has been found in library %s

ELB023 No entity %s has been found in referenced libraries

ELB024 No architecture found for entity %s in library %s

June 2006 Synopsys, Inc. 443

Leda User Guide Appendix E: Errors and Warnings Message List

ELB025 Unable to resolve %s in %s

ELB026 More than one entity named %s is visible at the same level

ELB027 Maximum number of unresolved instantiation reached: %ld

ELB028 %s in file %s line %d : not yet implemented

ELB029 Trying to elaborate top generic design entities with no generic default
value!

ELB030 Trying to connect to object %s with a different type: %s

ELB031 Trying to connect two objects with different kind: %s to %s

ELB032 Different name %s in interface for instantiation of entity %s

ELB033 Unmatched modes for port %s in an instantiation using a default con-
figuration: %s in component, , %s in entity

ELB034 Bad type %s in interface element %s of for instantiation of entity %s

ELB035 Port %s of mode IN unconnected in model %s\n\tof file %s line %ld

ELB036 Expression is equal to %s and is out of the range of the current con-
straint

ELB037 Type mark %s of object is incompatible with type mark %s of actual

ELB038 Subtype constraint is out of the limits of %s constraint

ELB039 Length of aggregate (= %ld) is greater than length of applicable con-
straint (= %ld)

ELB040 Length of aggregate (= %ld) is lower than length of applicable con-
straint (= %ld)

ELB041 Indexed: index %ld is out of range of type %s : bounds %ld and %ld

ELB042 Slice bounds are %ld and %ld : out of range of type %s : %ld and %ld

ELB043 Range length %ld of slice expression is different from range length
%ld of its type %s

ELB044 Expression error for %s : trying to divide by zero

ELB045 Expression error : An integer expression cannot be raised to a negative
power [LRM.7.2.7]

ELB046 Type conversion error

Label Messages

444 Synopsys, Inc. June 2006

Chapter : Leda User Guide

Elaboration Warning Messages

ELB047 For type %s conversion, low bound %ld is lower than %ld

ELB048 For type %s conversion, high bound %ld is greater than %ld

ELB049 Error : 64 bits integer too great to be casted into a 32 bits integer:

ELB050 Error : 64 bits real too great to be casted into a 32 bits integer:

ELB051 Unit %s is not a verilog model

ELB052 Primitive %s from library %s can not been elaborated as top unit

ELB053 In library %s unit name %s has not been found. Nevertheless a module
%s exists. If it is the wanted unit, please specify it with sensitive case

ELB054 Path is not allowed in $link_library \"%s\"

Label Messages

ELB055 Instance %s not fully elaborated (1-%d). Checking might not be com-
pleted\n

ELB056 Instance %s not fully elaborated (2-%d). Checking might not be com-
pleted\n

ELB057 Instance %s not fully elaborated (3-%d). Checking might not be com-
pleted\n

ELB058 Package body %s of library %s is obsolete: package %s of library %s
(recompiled after) is elaborated alone without taking body in account

ELB059 Unable to resolve %s in %s

ELB060 Function %s in file %s line %d not yet implemented

ELB061 String length %d is too short to build %s name from concatenation of
%s and %s

ELB062 Register %s is illegally connected to output port %s

ELB063 Signal %s has multiple drivers and is not resolved

ELB064 Signal %s between bounds %ld and %ld has multiple drivers and is not
resolved

Label Messages

June 2006 Synopsys, Inc. 445

Leda User Guide Appendix E: Errors and Warnings Message List

ELB065 Signal %s has multiple drivers

ELB066 Signal %s between bounds %ld and %ld has multiple drivers

ELB067 Out of bounds: in file %s line %ld:\n\tindex %ld is out of range of
object %s : bounds %ld and %ld

ELB068 File %s has not been found among directories of $search_path: %s

ELB069 Without environment variable $search_path specified, file %s has
been searched in current directory, but not found

ELB070 File %s is not a .db file and can not be taken in account

ELB071 Named association is required for port %s of db cell %s

ELB072 Library %s does not contain functionality for cell %s (%s). LEDA will
infer a black-box

ELB073 Number of loops exceeds max limit %ld for verilog generated block
%s

ELB073 Number %d of power rails exceeds max limit %ld in %s %s

ELB074 End of elaboration: stack 32 should be empty

ELB075 End of elaboration: stack 64 should be empty

ELB091 Suspicious array %s bound

Label Messages

446 Synopsys, Inc. June 2006

Chapter : Leda User Guide

Elaboration Note Messages

Label Messages

ELB075 Library %s added with physical path %s

ELB076 Changing path of library %s from %s to %s

ELB077 Too many port connections in instance %s

ELB078 The port %s is of mode IN and has been left unconnected

ELB079 Port %s has bounds left %ld and right %ld, but actual value has a
length equal to %ld

ELB080 Port %s has bounds left %ld and right %ld, but actual value with a
multiplier equal to %ld has a total length equal to %ld

ELB081 Extra digit in actual binary value %s. : The port %s has a size of %ld
binary digits and an actual size of %ld, the additional left bits are
ignored

ELB082 Environment variable $search_path not defined: .db files will only be
searched in current directory

ELB083 Environment variable $link_library not defined: no .db file will be
taken in account

June 2006 Synopsys, Inc. 447

Leda User Guide Index

Index
Symbols

$status variable 166
+checklib command-line option 159
+define command-line option 159
+exec+ command-line option 150
+incdir command-line option 159
+libtext command-line option 160
+nochecklib command-line option 157
+sv command-line switch 160
+tcl_file command-line option 155, 188
+tcl_rule+ command-line option 156
+tcl_shell command 188
+tcl_shell command-line switch 31, 156,

187
+v2k command-line switch 161
+v2k switch

using 65
.db files 39
.leda_config.tcl file 73
.leda_select files 106

translating 106
.lib file 39
.synopsys_leda.setup file 317

A
-a command-line option 159
Acrobat reader 179
add_to_collection 197
all_clocks command 139
all_inputs 198
all_inputs command 139
all_instances 198
all_outputs 198
all_outputs command 139
all_registers 198
ame 74
APIs

C 30

Tcl 30
append_to_collection 198
Application preferences window 108, 111
Area constraints 138
Attributes

defined 26
max/min 85

B
-b command-line switch 148
Batch mode 145

running 148
Bit blasting 108, 111
-blast switch 148
-block command-line switch 149
Block-level checks

enabling 108, 111
Block-level rule 27
Browser

clock 126
hierarchy 122
reset 126

Built-in commands
Tcl 187

C
C

API 30
using 178

-c command-line switch 149
-case_analysis command-line option 146,

149
-case_analysis option 97
Cells

tracing 123
check 271
Check boxes

using 113
check command 135, 136, 142

448 Synopsys, Inc. June 2006

Index Leda User Guide

Check menu 176
Checker

after executing 95
command-line 145
command-line example 162
command-line methods 145
command-line results 166
common command-line options 148
configuring 146
control panel 75
error viewer 113
fixing errors 112
invoking 90
invoking GUI 170
overview 24
processing log files 128
return status 166
running 148
saving preferences 108
setting preferences 108
sorting message display 116
using the GUI 169
Verilog command-line options 159
VHDL command-line options 157

Checker main window 90, 170
Checker run options

specifying 108, 111
checker_get_design_constraints command

276
checker_get_options command 276
checker_set_design_constraints command

278
checker_set_options command 280
-chip command-line switch 149
Chip-level checks

enabling 108, 111
Chip-level rules 27
Choose a configuration window 99
Clock and reset tree browsers

enabling 110, 126
Clock Grouping Feature 66
Clock tree browser 126
-clock_file command-line switch 149

-clockdump command-line switch 126,
149

Coding rules 27
Command-line options

+checklib 159
+define 159
+exec+ 150
+incdir 159
+libtext 160
+nochecklib 157
+tcl_file 155, 188
+tcl_rule+ 156
-case_analysis 97, 146, 149
-config 149
-config_summary 150
-constraint_file 150
-f 159
-files 157
-html 151
-i 159
-ignore_rule_pragmas 151
-k 159
-l 151
-lang 157, 160
-lappend 151
-log_dir 151
-maxhierdump 152
-maxmessages 152
-maxviolations 152
-nochecklib 157
-noclockdump 152
-nomaxmessages 153
-o 153
-project 153
-r 154
-severity 154
-sort 154
-summary 155
-test_asynch 155
-test_asynch_inverted 155
-test_clk_falling 155
-test_clk_rising 155
-top 156
-v 161
-w 161

June 2006 Synopsys, Inc. 449

Leda User Guide Index

-work 156
-x 161

Command-line switches
+sv 65, 160
+tcl_shell 31, 156, 187
+v2k 65, 161
-a 159
-b 148
-blast 148
-block 149
-c 149
-chip 149
-clock_file 149
-clockdump 126, 149
-d 159
-forcehierdump 150
-full_inf 150
-full_log 126, 151
-h 151
-mk 157
-mkk 157
-netlist 152
-nobanner 152
-nocode 152
-nocompilemessage 152
-noecho 152
-nohierdump 153
-nolog 153
-nomaxviolations 153
-nowarning 153
-old_format 153
-q 160
-quiet 154
-s 160
-sdc 135, 154
-summary 129
-sverilog 65, 160
-t 160
-translate_directive 156
-u 160
-upgrade400 106, 156
-use_netlist_reader 161
-uselrmsize 160
-usev2klrmsize 161
-version_directive 156

Commands
elaborate 188
export 86
gui_start 31
gui_stop 31
import 86
leda 90, 148, 170
leda -specifier 80, 170
setup_custom 316, 318

compare_collections 199
-config command-line option 149
-config_summary command-line option

150
Configuration

files 72
search path for rules 74

Configurations
Custom 99
Default 99
Gate-level 99
global checking 74
Leda-classic 99
Leda-optimized 99
loading default 99
loading saved 73
prebuilt 99
restoring 73
RTL 99
sdc-equivalency 99
sdc-postlayout 99
sdc-prelayout 99
sdc-quality-postlayout 99, 388
sdc-quality-prelayout 99, 390
sdc-quality-rtl 99, 393
sdc-rtl 99
sdc-top-versus-block 99
using 99

Configuring rules 102
connect_power_domain 200
Constant detection

block-level 49
Constant propagation

in batch mode 97
in GUI mode 97
in Tcl shell mode 97

450 Synopsys, Inc. June 2006

Index Leda User Guide

Constants
propagating 96

Constraint file 97
Constraint Query Language 136
-constraint_file command-line option 150
-constraint_file option 150
Conventions

documentation 21
typographical and symbol 21

copy_collections 200
CQL 136
create_clock command 137
create_generated_clock command 137
create_operating_conditions 197, 199
create_power_domain 200
create_power_net_info 201
current_design command 139, 282
Custom rules

compiled 72
directory location 72

D
-d command-line switch 159
Deactivating rules

from Error Viewer 105
from HDL files 103
with .synopsys_leda.setup file 101

delete_operating_conditions 201
Design Compiler 39, 133
Design queries

fast track 188
Design Query Language 30
Design report 120
Design rule constraints 137
Design rules

about 39
Rules

design 28
Designs

checking for errors 89
Detecting sets/resets 49
disable_isolation_cell_recognition 202
Disabling Redundant Rules 399

Displays
file 119
rule 117

DQL 30
Duplicated Rules

error messages 399
view redundant rules 399

E
Editor

Leda default 172
selecting 172
Vi 172
XEmacs 172

elaborate 188
elaborate command 135, 188, 283
enable_isolation_cell_recognition 202
Environment

checking 171
Environment variables

checking settings 171
HTML_NAVIGATOR 318
LEDA_CLOCK_FILE 318
LEDA_CONFIG 72, 74, 318
LEDA_HTML_DOC_PATH 318
LEDA_HTML_USR_PATH 318
LEDA_LANGUAGE 115, 318
LEDA_MAX_CLOCKS 318
LEDA_PATH 72, 86, 318
LEDA_READER 318
LEDA_RESOURCES 147, 316, 319
LEDA_RULES 72
LEDA_SELECT_FILE 319
link_library 40, 319
LM_LICENSE_FILE 319
search_path 40, 319
setting 317
SNPSLMD_LICENSE_FILE 319

Error report
saving 127

Error Viewer
using check boxes 113

Error viewer 113
configuring 116

June 2006 Synopsys, Inc. 451

Leda User Guide Index

displays 117
preferences window 116
sorting and filtering 117

Errors
fixing 112

Errors and Warnings Messages 433
Examples

Checker command-line 162

F
-f command-line option 159
File menu 173
Files

.db 39

.leda_select 106

.lib 39

.synopsys_leda.setup 317
constraint 97
leda.inf 167, 172
leda.log 128, 129, 154
leda_command.log 188
leda_config.tcl 73
leda_history.log 111
log 128
makefile 314
PDF 179
plibs 146
project 91
ruleset.rl 81
ruleset.sl 81
SDC 133

-files command-line option 157
filter_collection 202
Finite state machines 42

inferring 42
Mealy 42
Moore 42

-forcehierdump command-line switch 150
foreach_in_collection 203
FSM 42
-full_inf command-line switch 150
-full_log command-line switch 126, 151

G
Gate-level prebuilt configuration 325
Generating Log Files in Batch Mode 163
Generating Log Files in GUI Mode 186
Generating Log Files in Tcl Mode 307
Get top module/design entity window 94
get_all_input_boundaries_from_power_do

main 203
get_all_output_boundaries_from_power_d

omain 203
get_cells 210
get_cells command 139
get_clocks 204
get_clocks command 139
get_lib_cells command 139
get_lib_pins command 139
get_libs command 139
get_nets 204
get_nets command 139
get_nth_power_net 205
get_object_name 205
get_pins 207
get_pins command 139
get_ports 208
get_ports command 139
get_power_cells 205
get_power_domains 208
get_power_down 206
get_power_down_ack 206
get_power_net_max_voltage 206
get_power_net_min_voltage 206
get_power_net_source_port 207
get_power_net_type 207
getn_power_net 207
Getting help 22
GUI

invoking 170
saving preferences 108
setting references 108

GUI mode 169
gui_start command 31
gui_stop command 31

452 Synopsys, Inc. June 2006

Index Leda User Guide

H
-h command-line switch 151
Hardware Inference 43
Hardware rules 27
Hardware semantics

defined 27
Verilog 27
Verilog example 27
VHDL 27
VHDL example 27

Hardware-based rules
about 42
finite state machines 42

HDL source files
managing from GUI 181

Help
for Tcl commands 189
getting tool support 22

Help menu 178
HTML

help file 78
-html command-line option 151
HTML_NAVIGATOR environment

variable 318

I
-i command-line option 159
-ignore_rule_pragmas command-line

option 151
index_collection 209
infer_power_domain 209
infer_power_domains 209
Info report 171
Invoking Checker GUI 170
Invoking GUI 170
Invoking Specifier GUI 170
is_64bit 197

J
Japanese

prepackaged rule help 115

K
-k command-line option 159

L
-l command-line option 151
-lang command-line option 157, 160
-lappend command-line option 151
Leda

about 180
batch mode 30
changing modes 188
defined 23
GUI mode 30
how it works 25
how to use 29
invoking in Tcl shell mode 187
modes of operation 30
on the Web 180
overview 24
overview diagram 24
switching modes 30, 31
Tcl shell mode 30
terminology 29
types of rules 27
using batch mode 30
using GUI mode 30
using Tcl shell mode 30
using the GUI 169
version info 180
what is it? 23

leda.inf file 167, 172
leda.log file 128, 129, 154
LEDA_CLOCK_FILE environment

variable 318
leda_command.log file 188
LEDA_CONFIG environment variable 72,

74, 318
leda_history.log file 111
LEDA_HTML_DOC_PATH environment

variable 318
LEDA_HTML_USR_PATH environment

variable 318
LEDA_LANGUAGE environment

variable 115, 318

June 2006 Synopsys, Inc. 453

Leda User Guide Index

LEDA_MAX_CLOCKS environment
variable 318

LEDA_PATH environment variable 72,
318

LEDA_READER environment variable
318

LEDA_RESOURCES environment
variable 147, 316, 319

LEDA_RULES environment variable 72
LEDA_SELECT_FILE environment

variable 319
Leda-classic prebuilt configuration 327
Leda-optimized prebuilt configuration 327
Libraries

adding to VHDL resource projects 315
building 314
golden 93
logical/physical mapping 146
managing units from GUI 184
mapping 146
setting VHDL 313
setting VHDL resource 314
specifying 93

Library pop-up menu 182, 186
Library unit manager window 184
link command 285
link_library environment variable 40, 319
LM_LICENSE_FILE environment

variable 319
Load configuration window 78
Local VHDL resource libraries,

creating 316
Log files

printing summary info 154
sorting 154

-log_dir command-line option 151
Logic assignments 138

M
Macros

advanced programming 85
Make

solving problems 314
Makefile 314

Managers
library unit 184

Manual
VRSL Reference Guide 179

Manuals
Language Reference Manuals (LRMs) 51
Leda C Interface Guide 178
Leda Installation Guide 178
Leda Release Notes 178
Leda Rule Specifier Tutorial 19, 178
Leda Tcl Interface Guide 178
Verilog LRM 51
VeRSL Reference Guide 39, 179
VHDL LRM 51

Mapping libraries 146
Max violations

default 100 109
setting 109

-maxhierdump command-line option 152
-maxmessages command-line option 152
-maxviolations command-line option 152
Menus

check 176
file 173
help 178
library pop-up 182, 186
project 175
project pop-up 182
report 177
source file pop-up 183
unit pop-up 183, 186
view 178
window 178

Mixed-language designs
writing and checking 59

-mk command-line switch 157
-mkk command-line switch 157
Modes

batch 145
changing 188
GUI 169
Tcl shell 187

Modules/Units
pop-up windows 185

454 Synopsys, Inc. June 2006

Index Leda User Guide

N
Netlist checks 30

enabling 108, 111, 188
-netlist command-line switches 152
Netlist queries

fast track 188
Netlist Reader 66, 68
Netlist rules 28
Nets

tracing 123
-nobanner command-line switch 152
-noclockdump command-line option 152
-nocode command-line switch 152
-nocompilemessage command-line switch

152
-noecho command-line switch 152
-nohierdump command-line switch 153
-nohierdump switch 135
-nolog command-line switch 153
-nomaxmessages command-line option

153
-nomaxviolations command-line switch

153
-nowarning command-line switch 153

O
-o command-line option 153
-old_format command-line switch 153
Opening Projects

in batch mode 32
in GUI mode 32
in Tcl shell mode 32

Operating condition 137
Options

Verilog 92
VHDL 92

P
Path Mill 39
Path View

changing schemas 125
Path Viewer

extended 124
extending schematic 125
hierarchy browser 122
linking to source code 123
scanning to primary ports 125
scanning to sequentials 125
see full hierarchical name 123
setting preferences 124
standalone 124
tracing backward 123
tracing forward 123
traversing hierarchy 125
using 121

Path Viewer window 121
PDF file reader

Acrobat 179
Pins

tracing 123
plibs file 146

global 147
local 147
syntax 147

Policies
defined 26
exporting 86
importing 86
prepackaged 75
Verilint 104

Policy manager window 80, 81
Porosity constraints 138
Power constraints 138
Pragmas

leda off and leda on 103
synthesis_off and synthesis_on 42
translate_off and translate_on 42, 92
verilint off and verilint on 104

Prebuilt configurations
Gate-level 325
Leda-classic 327
Leda-optimized 327
RTL 322
SDC-prelayout 390
SDC-RTL 393

Preferences

June 2006 Synopsys, Inc. 455

Leda User Guide Index

saving 108
setting 108

PrimeTime 133
print_config_summary 210
-project command-line option 153
Project creation wizard 313
Project file

creating 91
Project menu 175
Project pop-up menu 182
Project pop-up window 185
project_add_library command 253, 254
project_delete command 255
project_get_all_files command 255
project_get_file_attributes command 256
project_get_library_attribute command

257
project_get_option_attribute command 258
project_get_ports command 258
project_get_top_units command 259
project_get_unit_kinds_from_library

command 259
project_get_units_from_file command 260
project_get_units_from_library command

261
project_get_working_libraries command

262
project_new command 262
project_open command 263
project_quit command 263
project_read command 264
project_record_cmd command 264
project_remove_file command 265
project_remove_library command 265
project_save command 266
project_specify_files command 266
project_specify_libraries command 267
project_specify_name command 268
project_specify_options command 269,

276, 278, 282
project_update command 269
Projects

creating 91

creating mixed-language 165
generating in batch mode 163
updating 130

propagate command 140, 141, 286
Propagating constants 96

Q
-q command-line switch 160
query_objects 210
-quiet command-line switch 154

R
-r command-line option 154
read_constraints command 136, 140, 287
read_files command 289
read_sverilog 293
read_sverilog command 293
read_verilog command 135, 141, 296
read_vhdl command 135, 141, 299
Regular expressions 83
Related documents 19
remove_clock_gating_cell 210
remove_from_collection 210
remove_isolation_cell 211
remove_level_shifter 211
remove_power_domain 211, 212
remove_power_net_info 212
remove_voltage_domain 212
report command 136
Report menu 177
report_clock_gating_cells 212
report_enable_pin 213
report_isolation_cells 213
report_level_shifter 213
report_operating_conditions 214
report_pin_voltage 214
report_power_domains 214
report_power_net_info 215
report_power_pins 215
report_power_switches 216
Reports

design 120

456 Synopsys, Inc. June 2006

Index Leda User Guide

error 117
info 171
summary 116

Reserved Variables 307
Reset detection 49
Reset tree browser 126
reset_isolation_cell_recognition 216
RTL prebuilt configuration 322
Rule configuration file

config.tcl 102
Rule selection files

translating 106
Rule wizard

configuring 73
locked wizard warning 76
locking 75
selecting configuration 99

Rule wizard window 74, 98
rule_deselect command 135
rule_get_all_masters_from_topic

command 219
rule_get_all_rules_from_master_id

command 220
rule_get_all_topics command 221
rule_get_configuration command 222
rule_get_current_configuration command

223, 236
rule_get_parameter command 142, 217
rule_get_policies command 224
rule_get_policy_attributes command 225
rule_get_predefined_configurations

command 226
rule_get_rules command 227
rule_get_ruleset_attributes command 228
rule_get_rulesets command 229
rule_get_selection command 218
rule_get_templateset_attributes command

230
rule_get_templatesets command 231
rule_link command 232
rule_load command 232
rule_load_configuration command 233
rule_manage_policy command 234

rule_patch command 235
rule_save_configuration command 235
rule_select command 135, 239
rule_set_default_configuration command

237
rule_set_html command 240
rule_set_message command 241
rule_set_parameter command 142, 241
rule_set_predefined_configuration

command 238
rule_set_severity command 247
Rules

block-level 27
chip-level 27
choosing creation method 79
coding 27
configuring 71, 102
configuring prepackaged 74
creating 71, 79
creating new 79
deactivating 101
defined 26
design 39
Disabling Redundant Rules 101
hardware 27
methods for creating 79
modifying 71
netlist 28
SDC 28
types 27, 146
types Leda cannot check 50
writing from scratch 80

Ruleset
defined 26

ruleset.rl file 81
ruleset.sl file 81
run command 301

S
-s command-line switch 160
SDC 110

object names 139
SDC checker

defining parameters for rules 142

June 2006 Synopsys, Inc. 457

Leda User Guide Index

policy 135
prepackaged rules 135
setting environment variables 136
simplified usage model 135
Tcl commands 140
using 133
using Tcl script 141

SDC checks
enabling 108, 111

-sdc command-line switch 135, 154
SDC file

error handling 140
setting version 141
supported commands 137

SDC rules 28
sdc_apply command 141, 303
sdc_set command 140
SDC-postlayout Prebuilt Configuration

388
SDC-prelayout prebuilt configuration 390
SDC-RTL prebuilt configuration 393
search_path environment variable 40, 319
Semantic exceptions

defined 51
enabling or disabling 92
Verilog 57
Verilog examples 57
VHDL 52
VHDL examples 52

Set default text editor window 172
Set detection 49
set_case_analysis 97, 149
set_case_analysis command 138, 304
set_clock_gating_cell 247
set_clock_latency command 137
set_clock_transition command 137
set_clock_uncertainty command 137
set_data_check command 137
set_disable_timing command 137
set_drive command 137
set_driving_cell command 137
set_enable_pin 248
set_false_path command 138

set_fanout_load command 137
set_gating_clock_check command 137
set_input_delay command 137
set_input_transition command 137
set_level_shifter 248
set_load command 137
set_logic_dc command 138
set_logic_one command 138
set_logic_zero command 138
set_max_area command 138
set_max_capacitance command 137
set_max_delay command 138
set_max_dynamic_power command 138
set_max_fanout command 137
set_max_leakage_power command 138
set_max_time_borrow command 137
set_max_transition command 137
set_min_capacitance command 137
set_min_delay command 138
set_min_fanout command 137
set_min_porosity command 138
set_multicycle_path command 138
set_operating_conditions 248
set_operating_conditions command 137
set_output_delay command 137
set_pin_voltage 249
set_port_fanout_number command 137
set_power_domain 250
set_power_domain_ctrl 250
set_power_off_value 250
set_power_pin 249, 253
set_power_switch 250, 251, 253
set_propagated_clock 137
set_resistance command 137
set_voltage_domain 253
set_wire_load_min_block_size command

137
set_wire_load_mode command 137
set_wire_load_model command 137
set_wire_load_selection_group command

137
setup_custom command 316, 318
-severity command-line option 154

458 Synopsys, Inc. June 2006

Index Leda User Guide

Signals
supply0 97
supply1 97

sizeof_collection 251
SNPSLMD_LICENSE_FILE environment

variable 319
-sort command-line option 154
sort_collection 251
Source file manager window 181
Source file pop-up menu 183
Source files

specifying 94
Specifier

as compiler 25
building rules 72
main window 80
overview 24
using the GUI 169

Specifier GUI
invoking 170

Specify design information window 109
Specify files window 94
Specify libraries window 93, 313
Specify project window 91
Standards

SystemVerilog 65, 93
Verilog 2001 65, 93
Verilog 95 93
VHDL 87 52
VHDL 93 52

-summary command-line option 155
-summary command-line switch 129
Summary report 116
Support

Leda 22
SystemVerilog 65
Verilog 2001 65

-sverilog command-line switch 160
-sverilog switch

using 65
Switching modes 31
Synopsys Design Constraints

checking 110
Synopsys Design Constraints checker 133

SYNOPSYS pragmas 92
synthesis_off pragma or directive 42, 156
synthesis_on pragma or directive 42, 156
System interface 137
SystemVerilog

enabling 65

T
-t command-line switch 160
Tcl

API 30
built-in commands 187
checker commands 271
getting command help 189
invoking shell mode 187
project commands 253
rule commands 197
syntax rules 133
using 178

Tcl Shell mode
with SDC checks 135

Tcl shell mode 187
Templates

defined 26
Templatesets 72
Terminology

Leda 29
Test clock/reset window 110
Test mode

propagating constants 96
-test_async command-line option 155
-test_asynch_inverted command-line

option 155
-test_clk_falling command-line option 155
-test_clk_rising command-line option 155
Text editor

Leda default 172
selecting 172
Vi 172
XEmacs 172

Timing constraints 137
Timing exceptions 138
Tools

June 2006 Synopsys, Inc. 459

Leda User Guide Index

Checker 23
Specifier 23

-top command-line option 156
Tracing

backward 124
forward 124

-translate_directive command-line switch
156

translate_off pragma or directive 42, 92,
156

translate_on pragma or directive 42, 92,
156

Tutorials
Leda rule specifier 178

U
-u command-line switch 160
Unit pop-up menu 183, 186
UNIX

regular expressions 83
Update the project window 130
-upgrade400 command-line switch 106,

156
-use_netlist_reader command-line switch

161
User environment

checking 171
-usev2klrmsize command-line switch 161
Using Regular Expressions with Hierarchy

193

V
-v command-line option 161
VCS 56
verify command 305
Verilint

policy 104
pragmas 104
rules 104

Verilog
instantiating in VHDL 63
mapping VHDL identifiers 64
modules 56

UDPs 56
Verilog 2001 65, 93
Verilog 95 93
Verilog designs

writing and checking 56
Verilog types

mapping to VHDL 62
-version command-line switch 156
VeRSL

defined 27
VHDL

adding files to resource projects 315
compilation order 315
design entities 52
instantiating Verilog units 64
loads and resets 49
mapping Verilog identifiers 64
resource libraries 52, 93
semantic exceptions examples 53
setting libraries 313
setting resource libraries 314
working libraries 93

VHDL 87 92, 314
VHDL 93 92, 314
VHDL data types

mapping to Verilog types 60
VHDL design entities

in Verilog modules 60
VHDL designs

writing and checking 52
VHDL semantic exceptions 52
Vi 172
View menu 178
VRSL

defined 27
-vuselrmsize command-line switch 160

W
-w command-line option 161
Warning

lock rule wizard 76
Window menu 178
Windows

460 Synopsys, Inc. June 2006

Index Leda User Guide

application preferences 108, 111
checker control panel 75
checker main 90, 170
choose a configuration 99
clock and reset tree browser 126
configure prepackaged rules 77
error viewer preferences 116
get top module/design entity 94
info report tab display 172
library unit manager 184
load configuration 78
path viewer 121
policy manager 80, 81
project pop-up 185
rule wizard 74, 98
set default text editor 172
source file manager 181
specify design information 109
specify files 94
specify libraries 93, 313
specify project 91
test clock/reset 110
update the project 130

Wire load models 137
Wizard 313

configuring 74
-work command-line option 156

X
-x command-line option 161
XEmacs 172

	Leda Document Navigator
	Contents
	Figures
	Tables
	Preface
	About This Manual
	Related Documents
	Manual Overview
	Typographical and Symbol Conventions

	Getting Leda Help
	The Synopsys Web Site

	1 Leda Overview
	Introduction
	What is Leda?
	How Leda Works
	Leda Terminology
	Types of Leda Rules
	Approaches to Using Leda
	Using Leda in Batch, GUI, and Tcl Shell Modes
	Invoking Leda
	Switching Modes
	Creating Projects
	Opening Projects
	Enabling Design Query Commands
	Configuring the GUI
	Typical Leda Usage Scenarios

	About Design Rules
	Using .db Files for Checks
	Limitation with Gates in .db Files

	About Hardware-Based Rules
	Finite State Machine Rules
	Hardware Inference
	Set and Reset Detection in VHDL and Verilog

	Rules Leda Cannot Check

	2 Writing and Checking HDL Designs
	Introduction
	Writing & Checking VHDL Designs
	VHDL Semantic Exceptions

	Writing & Checking Verilog Designs
	Verilog Semantic Exceptions

	Writing & Checking Mixed-Language Designs
	Instantiating a Verilog Module in a VHDL Architecture
	Instantiating a VHDL Design Entity in a Verilog Module

	Mapping Data Types
	VHDL and Verilog Identifiers

	Verilog 2001 Support
	SystemVerilog Support
	Clock Grouping Feature
	Netlist Reader
	Invoking the Netlist Reader
	Netlist Reader BNF

	3 Modifying and Creating Rules
	Introduction
	About Rules, Rulesets, and Policies
	Using Configurations
	Configuring the Rule Wizard
	Saving Configurations
	Restoring Configurations
	Rule Configuration Search Path
	Global Checking with the Same Rule Configuration

	Configuring Prepackaged Rules
	Locking the Rule Wizard
	Using the Rule Wizard to Configure Rules
	Policy and Topic Views
	Configuring Rule Properties

	Creating New Rules
	Copying and Modifying Prepackaged Coding Rules
	Writing New Rules from Scratch
	Creating New Ruleset Files
	Creating New Policies

	Defining Macro Values for Rules
	Using Predefined Macros to Constrain Identifiers
	Advanced Macro Programming
	Constraining Max/Min Attributes to Predefined Values

	Exporting and Importing Policies

	4 Checking Designs For Errors
	Introduction
	Invoking the Checker GUI
	Creating Projects to Check HDL Code
	Propagating Constants
	Constant Propagation Limitations

	Using the Rule Wizard to Select or Deselect Rules
	Using Prebuilt Configurations
	Policy and Topic Views
	Selecting or Deselecting Rules
	Disabling Redundant Rules

	Deactivating Rules
	Deactivating Rules with a Rule Configuration File
	Deactivating Rules from within HDL Source Files
	Deactivating Verilint Policy Rules
	Deactivating Rules from the Error Viewer
	Deactivating Rules By File
	Translating .leda_select Files

	Setting & Saving Checker Preferences
	Running the Checker
	Top Unit Tab
	Test Clock/Reset Tab
	Checkers Tab

	Fixing Errors Found by the Checker
	Reviewing Log, History, Errors/Warnings Tab in GUI
	Displaying Error Messages for STARC Policies
	Getting Prepackaged Rule Help for STARC Policies

	Sorting the Error Viewer Display
	Filtering the Error Viewer Display
	Error Report Displays

	Viewing the Design Report
	Using the Path Viewer
	Using Trace Forward and Trace Backward

	Using the Clock and Reset Tree Browsers
	Saving Error Reports
	Post-processing Batch Mode Log Files
	Generating Leda Summary Information (Info Report)

	Updating Projects

	5 Using the SDC Checker
	Introduction
	Leda Quality Checks
	Top-versus-Block SDC Checks
	SDC Equivalency Checks
	Simplified Usage Model for SDC Checker
	Supported SDC File Tcl Commands
	Specifying Design Objects
	Handling Errors in SDC Files

	Leda SDC Checker Tcl Commands
	Using a Tcl File For SDC Checks
	Defining Parameters for SDC Rules

	6 Using Leda Batch Mode
	Introduction
	Basic Usage Models and Rule Types
	Configuring the Checker
	Using plibs to Set Library Logical/Physical Mapping

	Running Leda in Batch Mode
	Common Command-Line Options and Switches
	VHDL Command-Line Options
	Verilog Command-Line Options

	Leda Batch Example Invocations
	Generating Log Files in Batch Mode
	Generating Projects in Batch Mode
	Verilog-only Projects
	VHDL-only Projects
	Mixed-Language Projects

	Checker Batch Mode Results
	Checker Return Status
	Viewing Checker Results
	Checking the Environment

	7 Using Leda GUI Mode
	Introduction
	Invoking the Checker/Specifier GUI
	Checking Your Environment
	Selecting a Text Editor
	The File Menu
	The Project Menu
	The Check Menu
	The Report Menu
	The View Menu
	The Window Menu
	The Help Menu
	Managing Source Files From the GUI
	Using Pop-up Menus in the Files Tab

	Managing Library Units From the GUI
	Using Pop-up Menus in the Modules/Units Tab

	Generating Log Files in GUI Mode

	8 Using Leda Tcl Shell Mode
	Introduction
	Invoking Leda in Tcl shell Mode
	Enabling Netlist Checks
	Changing Leda Modes
	Sourcing a Tcl Script in Leda
	Built-in Tcl Commands
	Getting Help on Leda Tcl Commands

	Collections
	Current Limitation
	Regular Expressions
	Using Regular Expressions with Hierarchy
	Anchoring Regular Expressions
	Using Regular Expressions with Busses

	Filter Expressions
	Using the -filter Option

	Rule Tcl Command Reference
	is_64bit
	add_to_collection
	all_clocks
	all_inputs
	all_instances
	all_outputs
	all_registers
	append_to_collection
	create_operating_conditions
	compare_collections
	connect_power_domain
	copy_collections
	create_power_domain
	create_power_net_info
	delete_operating_conditions
	disable_isolation_cell_recognition
	enable_isolation_cell_recognition
	filter_collection
	foreach_in_collection
	get_all_input_boundaries_from_power_domain
	get_all_output_boundaries_from_power_domain
	get_cells
	get_clocks
	get_nets
	get_nth_power_net
	get_object_name
	get_power_cells
	get_power_down
	get_power_down_ack
	get_power_net_max_voltage
	get_power_net_min_voltage
	get_power_net_source_port
	get_power_net_type
	getn_power_net
	get_pins
	get_ports
	get_power_domains
	infer_power_domain
	infer_power_domains
	index_collection
	print_config_summary
	query_objects
	remove_from_collection
	remove_isolation_cell
	remove_level_shifter
	remove_power_domain
	remove_power_net_info
	report_clock_gating_cells
	report_enable_pin
	report_isolation_cells
	report_level_shifter
	report_operating_conditions
	report_pin_voltages
	report_power_domain
	report_power_net_info
	report_power_pins
	report_power_switches
	reset_isolation_cell_recognition
	rule_deselect
	rule_get_parameter
	rule_get_selection
	rule_get_all_masters_from_topic
	rule_get_all_rules_from_master_id
	rule_get_all_topics
	rule_get_configuration
	rule_get_current_configuration
	rule_get_policies
	rule_get_policy_attributes
	rule_get_predefined_configurations
	rule_get_rules
	rule_get_ruleset_attributes
	rule_get_rulesets
	rule_get_templateset_attributes
	rule_get_templatesets
	rule_link
	rule_load
	rule_load_configuration
	rule_manage_policy
	rule_patch
	rule_save_configuration
	rule_get_current_configuration
	rule_set_default_configuration
	rule_set_predefined_configuration
	rule_select
	rule_set_html
	rule_set_message
	rule_set_parameter
	rule_set_severity
	set_clock_gating_cell
	set_enable_pin
	set_level_shifter
	set_operating_conditions
	set_pin_voltage
	set_power_pin
	set_power_domain
	set_power_domain_ctrl
	set_power_off_value
	set_power_switch
	sizeof_collection
	sort_collection

	Project Tcl Command Reference
	project_add_library
	project_build
	project_delete
	project_get_all_files
	project_get_file_attributes
	project_get_library_attribute
	project_get_option_attribute
	project_get_ports
	project_get_top_units
	project_get_unit_kinds_from_library
	project_get_units_from_file
	project_get_units_from_library
	project_get_working_libraries
	project_new
	project_open
	project_quit
	project_read
	project_record_cmd
	project_remove_file
	project_remove_library
	project_save
	project_specify_files
	project_specify_libraries
	project_specify_name
	project_specify_options
	project_update

	Checker Tcl Command Reference
	check
	checker_get_design_constraints
	checker_get_options
	checker_set_design_constraints
	checker_set_options
	current_design
	elaborate
	link
	propagate
	read_constraints
	read_files
	read_sverilog
	read_verilog
	read_vhdl
	report
	run
	sdc_apply
	set_case_analysis
	verify

	Generating Log Files in Tcl Mode
	Reserved Variables

	A Managing VHDL Libraries and Files
	Introduction
	Setting Libraries
	Setting Resource Libraries

	Building Libraries
	Adding Files to VHDL Resource Projects
	Adding Libraries to VHDL Resource Projects
	Creating Local VHDL Resource Libraries

	B Leda Environment Variables
	Introduction
	Setting Leda Environment Variables
	Using Leda Environment Variables

	C Leda Prebuilt Configurations
	Overview
	RTL Prebuilt Configuration
	Gate-level Prebuilt Configuration
	Leda-classic Prebuilt Configuration
	CDC Prebuilt Configuration
	SDC-postlayout Prebuilt Configuration
	SDC-prelayout Prebuilt Configuration
	SDC-RTL Prebuilt Configuration
	SDC-top-versus-block Prebuilt Configuration
	SDC-equivalency Prebuilt Configuration

	D Leda Duplicated Rules
	Introduction
	Disabling Redundant Rules
	Duplicated Rule List

	E Errors and Warnings Message List
	Introduction
	Verilog Compilation Warnings
	Verilog Compilation Failures
	Deselectable Messages
	Elaboration Failure Messages
	Elaboration Error Messages
	Elaboration Warning Messages
	Elaboration Note Messages

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

